Skip to main content
Log in

Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Cavity ringdown (CRD) absorption spectroscopy enables spectroscopic sensing of gases with a high sensitivity and accuracy. Instrumental improvements result in a new high-performance continuous-wave (cw) CRD spectrometer using a rapidly-swept cavity of simple design. It employs efficient data-acquisition procedures, high-reflectivity mirrors, a low-adsorption flow cell, and various compact fibre-optical components in a single-ended transmitter-receiver configuration suitable for remote sensing. Baseline noise levels in our latest cw-CRD experiments yield a competitive noise-equivalent absorption limit of ∼5×10-10 cm-1Hz-1/2, independent of whatever molecules are to be detected. Measurements in the near-infrared wavelength range of 1.51–1.56 μm yield sub-ppmv (i.e., ppbv or better) sensitivity in the gas phase for several representative molecules (notably CO2, CO, H2O, NH3, C2H2, and other hydrocarbons). By measuring spectroscopic features in the 1.525 μm band of C2H2 gas, we realise detection limits of 19 nTorr (2.5×10-11 atm) of neat C2H2 (Doppler-limited at low pressure) and 0.37 ppbv of C2H2 in air (pressure-broadened at 1 atm). Our cw-CRD spectrometer is a high-performance sensor in a relatively simple, low-cost, compact instrument that is amenable to chemical analysis of trace gases in medicine, agriculture, industry, and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.J. Scherer, J.B. Paul, A. O’Keefe, R.J. Saykally, Chem. Rev. 97, 25 (1997)

    Article  Google Scholar 

  2. J.B. Paul, R.J. Saykally, Anal. Chem. 69, 287A (1997)

  3. M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94, 337 (1998)

    Article  Google Scholar 

  4. K.W. Busch, M.A. Busch (Eds.), Cavity-Ringdown Spectroscopy – An Ultratrace-Absorption Measurement Technique (ACS Symp. Ser. 720) (Amer. Chem. Soc., Washington, 1999)

  5. G. Berden, R. Peeters, G. Meijer, Int. Rev. Phys. Chem. 19, 565 (2000)

    Article  Google Scholar 

  6. R.D. van Zee, J.P. Looney (Eds.), Cavity-Enhanced Spectroscopies (Experimental Methods in the Physical Sciences, Vol. 40) (Academic Press, NY, 2002)

  7. A. O’Keefe, D.A.G. Deacon, Rev. Sci. Instrum. 59, 2544 (1988)

    Article  ADS  Google Scholar 

  8. D. Romanini, A.A. Kachanov, N. Sadeghi, F. Stoeckel, Chem. Phys. Lett. 264, 316 (1997)

    Article  ADS  Google Scholar 

  9. D. Romanini, A.A. Kachanov, F. Stoeckel, Chem. Phys. Lett. 270, 538 (1997)

    Article  ADS  Google Scholar 

  10. B.A. Paldus, J.S. Harris, J. Martin, J. Xie, R.N. Zare, J. Appl. Phys. 82, 3199 (1997)

    Article  ADS  Google Scholar 

  11. B.A. Paldus, C.C. Harb, T.G. Spence, B. Wilke, J.S. Harris, R.N. Zare, J. Appl. Phys. 83, 3991 (1997)

    Article  ADS  Google Scholar 

  12. Y. He, M. Hippler, M. Quack, Chem. Phys. Lett. 289, 527 (1998)

    Article  ADS  Google Scholar 

  13. K.J. Schulz, W.R. Simpson, Chem. Phys. Lett. 297, 523 (1998)

    Article  ADS  Google Scholar 

  14. S.S. Brown, Chem. Rev. 103, 5219 (2003)

    Article  Google Scholar 

  15. S.M. Ball, R.L. Jones, Chem. Rev. 103, 5239 (2003)

    Article  Google Scholar 

  16. B.G. Fidric, R.A. Provencal, S.M. Tan, E.R. Crosson, A.A. Kachanov, B.A. Paldus, Opt. Photon. News 14, 25 (2003)

    Article  Google Scholar 

  17. D.B. Atkinson, Analyst 128, 117 (2003)

    Article  ADS  Google Scholar 

  18. C. Vallance, New J. Chem. 29, 867 (2005)

    Article  Google Scholar 

  19. M. Mazurenka, A.J. Orr-Ewing, R. Peverall, G.A.D. Ritchie, Ann. Rep. Prog. Chem. C 101, 100 (2005)

    Article  Google Scholar 

  20. B.A. Paldus, A.A. Kachanov, Can. J. Phys. 83, 975 (2005)

    Article  ADS  Google Scholar 

  21. J. Ye, L.-S. Ma, J.L. Hall, J. Opt. Soc. Am. B 15, 6 (1998)

    Article  ADS  Google Scholar 

  22. J. Ye, L.-S. Ma, J.L. Hall, Using FM methods with molecules in a high finesse cavity, a demonstrated path to <E-12 absorption sensitivity, In: [4], Chapt. 15, pp. 233–253

  23. L.-S. Ma, J. Ye, P. Dubé, J.L. Hall, J. Opt. Soc. Am. B 16, 2255 (1999)

    Article  ADS  Google Scholar 

  24. J. Ye, J.L. Hall, Absorption detection at the quantum limit, probing high-finesse cavities with modulation techniques, In: [6], Chapt. 3, pp. 233–127

  25. T.G. Spence, C.C. Harb, B.A. Paldus, R.N. Zare, B. Wilke, R.L. Byer, Rev. Sci. Instrum. 71, 347 (2000)

    Article  ADS  Google Scholar 

  26. E.R. Crosson, K.N. Ricci, B.A. Richman, F.C. Chilese, T.G. Owano, R.A. Provencal, M.W. Todd, J. Glasser, A.A. Kachanov, B.A. Paldus, T.G. Spence, R.N. Zare, Anal. Chem. 74, 2003 (2002)

    Article  Google Scholar 

  27. J.B. Dudek, P.B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, K.K. Lehmann, Anal. Chem. 75, 4599 (2004)

    Article  Google Scholar 

  28. D. Halmer, G. von Basum, P. Hering, M. Murtz, Opt. Lett. 30, 2314 (2005)

    Article  ADS  Google Scholar 

  29. Y. He, B.J. Orr, Chem. Phys. Lett. 319, 131 (2000)

    Article  ADS  Google Scholar 

  30. Y. He, B.J. Orr, Chem. Phys. Lett. 335, 215 (2001)

    Article  ADS  Google Scholar 

  31. Y. He, B.J. Orr, J. Chin. Chem. Soc. 48, 591 (2001)

    Google Scholar 

  32. Y. He, B.J. Orr, Appl. Phys. B 75, 267 (2002)

    Article  ADS  Google Scholar 

  33. R.A. Shorten, Y. He, B.J. Orr, Aust. J. Chem. 56, 219 (2003)

    Article  Google Scholar 

  34. J.W. Hahn, Y.S. Yoo, J.Y. Lee, J.W. Kim, H.-W. Lee, Appl. Opt. 38, 1859 (1999)

    Article  ADS  Google Scholar 

  35. Y. He, B.J. Orr, Appl. Phys. B 79, 941 (2004)

    Article  ADS  Google Scholar 

  36. Y. He, B.J. Orr, Appl. Opt. 44, 6752 (2005)

    Article  ADS  Google Scholar 

  37. M.J. Thorpe, K.D. Moll, R.J. Jones, B. Safdi, J. Ye, Science 311, 1595 (2006)

    Article  ADS  Google Scholar 

  38. F.V. Englich, Y. He, B.J. Orr, Appl. Phys. B 83, 1 (2006)

    Article  ADS  Google Scholar 

  39. L.S. Rothman, D. Jacquemart, A. Barbe, D. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, G. Wagner, J. Quantum Spectrosc. Radiat. Transf. 96, 139 (2005)

    Article  ADS  Google Scholar 

  40. M.E. Webber, R. Claps, F.V. Englich, F.K. Tittel, J.B. Jeffries, R.K. Hanson, Appl. Opt. 40, 4395 (2001)

    Article  ADS  Google Scholar 

  41. D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 36, 3298 (1997)

    Article  ADS  Google Scholar 

  42. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 36, 8745 (1997)

    Article  ADS  Google Scholar 

  43. R.M. Mihalcea, D.S. Baer, R.K. Hanson, Meas. Sci. Technol. 9, 327 (1998)

    Article  ADS  Google Scholar 

  44. B.L. Upschulte, D.M. Sonnenfroh, M.G. Allen, Appl. Opt. 38, 1506 (1999)

    Article  ADS  Google Scholar 

  45. C.E. Miller, L.R. Brown, J. Mol. Spectrosc. 228, 329 (2004)

    ADS  Google Scholar 

  46. Z. Majcherova, P. Macko, D. Romanini, V.I. Perevalov, S.A. Tashkun, J.-L. Teffo, A. Campargue, J. Mol. Spectrosc. 230, 1 (2005)

    Article  ADS  Google Scholar 

  47. R.A. Toth, Appl. Opt. 33, 4851 (1994)

    ADS  Google Scholar 

  48. R.R. Gamache, J.-M. Hartmann, Can. J. Chem. 82, 1013 (2004)

    Article  Google Scholar 

  49. G. Totschnig, D.S. Baer, J. Wang, F. Winter, H. Hofbauer, R.K. Hanson, Appl. Opt. 39, 2009 (2000)

    Article  ADS  Google Scholar 

  50. X. Zhou, X. Liu, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 14, 1459 (2003)

    Article  ADS  Google Scholar 

  51. Q. Kou, G. Guelachvili, M.A. Temsamani, M. Herman, Can. J. Phys. 72, 1241 (1994)

    ADS  Google Scholar 

  52. K. Nakagawa, M. de Labachelerie, Y. Awaji, M. Kourogi, J. Opt. Soc. Am. B 13, 2708 (1996)

    Article  ADS  Google Scholar 

  53. R. El Hachtouki, J. Vander Auwera, J. Mol. Spectrosc. 216, 355 (2002)

    Article  ADS  Google Scholar 

  54. G. Modugno, C. Corsi, Infrared Phys. Technol. 40, 93 (1999)

    Article  ADS  Google Scholar 

  55. M.E. Webber, D.S. Baer, R.K. Hanson, Appl. Opt. 40, 2031 (2001)

    Article  ADS  Google Scholar 

  56. V. Nagali, S.I. Chou, D.S. Baer, R.K. Hanson, J. Segall, Appl. Opt. 35, 4026 (1996)

    Article  ADS  Google Scholar 

  57. A.M. Parkes, B.L. Fawcett, R.E. Austin, S. Nakamichi, D.E. Shallcross, A.J. Orr-Ewing, Analyst 128, 960 (2003)

    Article  ADS  Google Scholar 

  58. A.M. Parkes, R.E. Lindley, A.J. Orr-Ewing, Anal. Chem. 76, 7329 (2004)

    Article  Google Scholar 

  59. S.M. Beck, Appl. Opt. 24, 1761 (1985)

    Article  ADS  Google Scholar 

  60. B. Paldus, B. Richman, A. Kachanov, E. Crosson, Method for increasing the dynamic range of a cavity enhanced optical spectrometer," US Patent Application No. US 2004-966315 (2004); US Patent No. US 2006084180 (2006)

  61. G. von Basum, D. Halmer, P. Hering, M. Murtz, S. Schiller, F. Müller, A. Popp, F. Kühnemann, Opt. Lett. 29, 797 (2004)

    Article  ADS  Google Scholar 

  62. J. Morville, D. Romanini, A.A. Kachanov, M. Chenevier, Appl. Phys. B 78, 465 (2004)

    Article  ADS  Google Scholar 

  63. J. Morville, S. Kassi, M. Chenevier, D. Romanini, Appl. Phys. B 80, 1027 (2005)

    Article  ADS  Google Scholar 

  64. S. Kassi, D. Romanini, A. Campargue, B. Bussery-Honvault, Chem. Phys. Lett. 409, 281 (2005)

    Article  ADS  Google Scholar 

  65. J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, P. Szriftgiser, Appl. Phys. B 83, 261 (2006)

    Article  ADS  Google Scholar 

  66. D.E. Vogler, M.W. Sigrist, Appl. Phys. B 83 (2006), DOI: 10.1007/s00340-006-2313-z

  67. M.E. Webber, M. Pushkarsky, C.K.N. Patel, Appl. Opt. 42, 2119 (2003)

    Article  ADS  Google Scholar 

  68. A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.I. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 043105 (2005)

    Article  ADS  Google Scholar 

  69. M. Scotoni, A. Rossi, D. Bassi, R. Buffa, S. Iannotta, A. Boschetti, Appl. Phys. B 82, 495 (2006)

    Article  ADS  Google Scholar 

  70. M.D. Levenson, B.A. Paldus, T.G. Spence, C.C. Harb, R.N. Zare, M.J. Lawrence, Opt. Lett. 25, 920 (2000)

    Article  ADS  Google Scholar 

  71. N.J. van Leeuwen, J.C. Diettrich, A.C. Wilson, Appl. Opt. 42, 3670 (2003)

    Article  ADS  Google Scholar 

  72. T. Gherman, D. Romanini, Opt. Express 10, 1033 (2002)

    ADS  Google Scholar 

  73. I. Debecker, A.K. Mohamed, D. Romanini, Opt. Express. 13, 2906 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B.J. Orr.

Additional information

PACS

07.07.Df; 07.57.Ty; 42.62.Fi

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Y., Orr, B. Detection of trace gases by rapidly-swept continuous-wave cavity ringdown spectroscopy: pushing the limits of sensitivity. Appl. Phys. B 85, 355–364 (2006). https://doi.org/10.1007/s00340-006-2371-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2371-2

Keywords

Navigation