Skip to main content
Log in

Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A liquid-nitrogen free mid-infrared tunable diode laser absorption spectroscopy (TDLAS) system equipped with a folded-optical-path astigmatic Herriott cell was used to measure levels of exhaled nitric oxide (eNO) and exhaled carbon dioxide (eCO2) in breath. Quantification of absolute eNO concentrations was performed using NO/CO2 absorption ratios measured by the TDLAS system coupled with absolute eCO2 concentrations measured with a non-dispersive infrared sensor. This technique eliminated the need for routine calibrations using standard cylinder gases. The TDLAS system was used to measure eNO in children and adults (n=799, ages 5 to 64) over a period of more than one year as part of a field study. Volunteers for the study self-reported data including age, height, weight, and health status. The resulting data were used to assess system performance and to generate eNO and eCO2 distributions, which were found to be log-normal and Gaussian, respectively. There were statistically significant differences in mean eNO levels for males and females as well as for healthy and steroid naïve asthmatic volunteers not taking corticosteroid therapies. Ambient NO levels affected measured eNO concentrations only slightly, but this effect was not statistically significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.H. Yates, Immunol. Cell Biol. 79, 178 (2001)

    Article  Google Scholar 

  2. P.E. Silkoff, M. Carlson, T. Bourke, R. Katial, E. Ögren, S.J. Szefler, J. Allergy Clin. Immunol. 114, 1242 (2004)

    Article  Google Scholar 

  3. L.R. Narasimhan, W. Goodman, C.K.N. Patel, Proc. Nat. Acad. Sci. 98, 4617 (2001)

    Article  ADS  Google Scholar 

  4. K.D. Skeldon, M.G.M. Gibson, C.A. Wyse, L.C. McMillan, S.D. Monk, C. Longbottom, M.J. Padgett, Appl. Opt. 44, 4712 (2005)

    Article  ADS  Google Scholar 

  5. H. Dahnke, D. Kleine, P Hering, M. Mürtz, Appl. Phys. B 72, 971 (2001)

    ADS  Google Scholar 

  6. C.B. Roller, K. Namjou, J. Jeffers, M. Camp, P.J. McCann, J. Grego, Appl. Opt. 41, 6018 (2002)

    Article  ADS  Google Scholar 

  7. C. Roller, K. Namjou, J. Jeffers, W. Potter, P.J. McCann, J. Grego, Opt. Lett. 27, 107 (2002)

    Article  ADS  Google Scholar 

  8. L. Menzel, A.A. Kosterev, F.K. Tittel, C. Gmachl, F. Capasso, D.L. Sivco, J.N. Baillargeon, A.L. Hutchinson, A.Y. Cho, W. Urban, Appl. Phys. B 72, 859 (2001)

    ADS  Google Scholar 

  9. Y.A. Bakhirkin, A.A. Kosterev, R.F. Curl, F.K. Tittel, D.A. Yarekha, L. Hvozdara, M. Giovannini, J. Faist, Appl. Phys. B 82, 149 (2006)

    Article  ADS  Google Scholar 

  10. S.E. Ebeler, A.J. Clifford, T. Shibamoto, J. Chromatogr. B 702, 211 (1997)

    Article  Google Scholar 

  11. D. Smith, T. Wang, J. Sulé-Suso, P. Španěl, A.E. Haj, Rapid Commun. Mass Spectrom. 17, 845 (2003)

    Article  Google Scholar 

  12. S.M. Studer, J.B. Orens, I. Rosas, J.A. Krishnan, K.A. Cope, S. Yang, J.V. Conte, P.B. Becker, T.H. Risby, J. Heart Lung Transplant. 20, 1158 (2001)

    Article  Google Scholar 

  13. M. Phillips, M. Sabas, J. Greenberg, J. Clin. Pathol. 46, 861 (1993)

    Article  Google Scholar 

  14. B.S. Aldeen, D.M. Laskowski, R.A. Dweik, Proc. Am. Thoracic Soc. 3, A310 (2006)

    Google Scholar 

  15. P.E. Silkoff, Am. J. Resp. Crit. Care 160, 2104 (1999)

    Google Scholar 

  16. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.M. Flaud, A. Perrin, C. Camy-Peret, V. Dana, J.Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quantum Spectrosc. Radiat. Transf. 60, 665 (1998)

    Article  ADS  Google Scholar 

  17. K.W. Tsang, S.K. Ip, R. Leung, G.L. Tipoe, S.L. Chan, I.H. Shum, M.S. Ip, C. Yan, P.C. Fung, M. Chan-Yeung, W. Lam, Lung 179, 83 (2001)

    Article  Google Scholar 

  18. G.W.K. Wong, E.K.H. Liu, T.F. Leung, E. Young, F.W.S. Ko, D.S.C. Hui, T.F. Fok, C.K.W. Lai, Clin. Exp. Allergy 35, 889 (2005)

    Article  Google Scholar 

  19. M. Bernareggi, G. Cremona, Pulmon. Pharmacol. Therap. 12, 331 (1999)

    Article  Google Scholar 

  20. A.-C. Olin, A. Rosengren, D. Thelle, K. Toren, Proc. Am. Thoracic Soc. 3, A309 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.B. Roller.

Additional information

PACS

33.20.Ea; 42.62.Be; 82.80.Gk; 87.80.-g

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namjou, K., Roller, C., Reich, T. et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy. Appl. Phys. B 85, 427–435 (2006). https://doi.org/10.1007/s00340-006-2301-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2301-3

Keywords

Navigation