Skip to main content
Log in

Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the localized surface plasmon resonance (LSPR) and the surface-enhanced Raman scattering (SERS) of arrays of gold cylindrical and ellipsoidal nanoparticles with different diameters or major axes. The LSPR and SERS gains are calculated with the three dimensional Finite-Difference Time-Domain method using the Drude–Lorentz dispersion model. We find that the maximum of the extinction spectrum and the average SERS gain of each investigated nanostructures are shifted whatever their size and their shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Anderson, A. Hartshuh, L. Novotny, Mater. Today 5, 50 (2005)

    Article  Google Scholar 

  2. S. Nie, S.R. Emory, Science 275, 1102 (1997)

    Article  PubMed  Google Scholar 

  3. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M. Feld, Phys. Rev. Lett. 78, 1667 (1996)

    Article  ADS  Google Scholar 

  4. A. Wokaun, Solid State Phys. 38, 223 (1984)

    Article  Google Scholar 

  5. G.C. Schatz, R.P. Van Duyne, Electromagnetic Mechanism of Surface Enhanced Raman Spectroscopy. Handbook of Vibrational Spectroscopy, ed. by J.M. Chalmers, P.R. Griffiths (Wiley, New York, 2002), Vol. 1, p. 759

  6. A. Otto, J. Electron. Spectrosc. Relat. Phenom. 29, 329 (1983)

    Article  Google Scholar 

  7. A. Kudelski, J. Bukowska, Surf. Sci. 368, 396 (1996)

    Article  ADS  Google Scholar 

  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Book  Google Scholar 

  9. P.F. Liao, M.B. Stern, Opt. Lett. 7, 483 (1982)

    Article  ADS  Google Scholar 

  10. N. Félidj, J. Aubard, G. Lévi, Phys. Rev. B 65, 075419 (2002)

    Article  ADS  Google Scholar 

  11. D.A. Weitz, S. Garoff, T.J. Gramila, Opt. Lett. 7, 168 (1982)

    Article  ADS  Google Scholar 

  12. J. Grand, S. Kostcheev, J.-L. Bijeon, M. Lamy de la Chapelle, P.-M. Adam, A. Rumyantseva, G. Lerondel, P. Royer, Synth. Met. 139, 621 (2003)

    Article  Google Scholar 

  13. N. Félidj, J. Aubard, G. Lévi, J.R. Krenn, A. Hohenau, G. Schider, A. Leitner, F.R. Aussenegg, Appl. Phys. Lett. 82, 3095 (2003)

    Article  ADS  Google Scholar 

  14. J. Grand, M. Lamy de la Chapelle, J.-L. Bijeon, P.-M. Adam, A. Vial, P. Royer, Phys. Rev. B 72, 033407 (2005)

    Article  ADS  Google Scholar 

  15. C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 107, 7426 (2003)

    Article  Google Scholar 

  16. A.D. McFarland, M.A. Young, J.A. Dieringer, R.P. Van Duyne, J. Phys. Chem. B 109, 11279 (2005)

    Article  Google Scholar 

  17. M. Micic, N. Klymyshyn, Y.D. Suh, H.P. Lu, J. Phys. Chem. B 107, 1574 (2003)

    Article  Google Scholar 

  18. L. Zhao, K. Lance Kelly, G.C. Shatz, J. Phys. Chem. B 107, 7343 (2003)

    Article  Google Scholar 

  19. A. Taflove, S. Hagness, Computational electrodynamics: The Finite-Difference Time Domain Method (Artech House, Boston, 2000)

    MATH  Google Scholar 

  20. K. Kunz, R. Luebbers, The finite-difference time-domain method for electromagnetics (CRC Press, Boca Raton, FL, 1993)

  21. T.R. Jensen, M. Duval Malinsky, C.L. Haynes, R.P. Van Duyne, J. Phys. Chem. B 104, 10549 (2000)

    Article  Google Scholar 

  22. T. Klar, M. Perner, S. Grosse, G. Von Plessen, W. Spickl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)

    Article  ADS  Google Scholar 

  23. S. Zou, N. Janel, G.C. Shatz, J. Chem. Phys. 120, 10871 (2004)

    Article  PubMed  ADS  Google Scholar 

  24. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, M. Lamy de la Chapelle, Phys. Rev. B 71, 085416 (2005)

    Article  ADS  Google Scholar 

  25. W.-Y. Yang, J. Hulteen, G. Schatz, R.P. Van Duyne, J. Chem. Phys. 104, 4313 (1996)

    Article  ADS  Google Scholar 

  26. G. Laurent, N. Félidj, J. Aubard, G. Lévi, Phys. Rev. B 71, 045430 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Vial.

Additional information

PACS

42.25.Fx; 71.45.Gm; 78.30.-j

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grimault, AS., Vial, A. & Lamy de la Chapelle, M. Modeling of regular gold nanostructures arrays for SERS applications using a 3D FDTD method. Appl. Phys. B 84, 111–115 (2006). https://doi.org/10.1007/s00340-006-2187-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-006-2187-0

Navigation