Skip to main content
Log in

Laser-induced quantum adsorption of neutral atoms in dielectric surfaces

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We propose an optical technique to load neutral atoms in quantum adsorption states of a dielectric surface. Considering a realistic atom–surface potential well, we show that free cold lithium atoms approaching a LiF surface may be transferred to a surface bound state of the first excited atomic state. We also discuss schemes to populate adsorption energy levels of the atomic electronic ground state, and we find that spontaneous mechanisms transfer more than 90% of the excited adsorbed atoms into vibrational levels of the fundamental adsorption potential. The lifetime of the resulting two-dimensional waveguide is calculated, considering the adatoms’ interaction with the crystal phonons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujita J, Shimizu F (2002) Mater. Sci. Eng. B 96:159

    Article  Google Scholar 

  2. Tanaka K (1999) Thin Solid Films 341:120

    Article  ADS  Google Scholar 

  3. Rosei F (2004) J. Phys. Condens. Matter 16:S1373

    Article  ADS  Google Scholar 

  4. Farías D, Rieder K-H (1998) Rep. Prog. Phys. 61:1575

    Article  ADS  Google Scholar 

  5. Jardine AP, Dworski S, Fouquet P, Alexandrowicz G, Riley DJ, Lee GYH, Ellis J, Allison W (2004) Science 304:1790

    Article  ADS  Google Scholar 

  6. Treutlein P et al. (2004) Phys. Rev. Lett. 92:203005

    Article  ADS  Google Scholar 

  7. McGuirk JM, Harber DM, Obrecht JM, Cornell EA (2004) Phys. Rev. A 69:062905

    Article  ADS  Google Scholar 

  8. Desbiolles P, Dalibard J (1996) Opt. Commun. 132:540

    Article  ADS  Google Scholar 

  9. Hinds EA, Boshier MG, Hughes IG (1998) Phys. Rev. Lett. 80:645

    Article  ADS  Google Scholar 

  10. Lima EG et al. (2000) Phys. Rev. A 62:013410

    Article  ADS  Google Scholar 

  11. Passerat de Silans T, Farias B, Oriá M, Chevrollier M (2004) in XIX International Conference on Atomic Physics (ICAP), p 188

  12. Perturbation theory for the higher-order terms of the surface potential (1) gives relative corrections of the order of 10-2 for the adsorption energies. Then, such a refinement is worthless if one considers the actual lack of experimental data or precise calculations for this atom–surface interaction

  13. Ashcroft NW, Mermin ND (1976) Solid State Physics. Saunders College, Philadelphia, p 368

  14. Various potential shapes have been considered to describe the surface potential for neutral atoms, such as, for example, 12-3, 9-3, Morse; see for instance Ref. [19]

  15. Metcalf HJ, van der Straten P (1999) Laser Cooling and Trapping. Springer, New York

    Google Scholar 

  16. Bouchiat MA et al. (1999) Appl. Phys. B 68:1109

    Article  ADS  Google Scholar 

  17. Yan Z-C, Dalgarno A, Babb JF (1997) Phys. Rev. A 55:2882

    Article  ADS  Google Scholar 

  18. Stephens M, Rhodes R, Wieman C (1994) J. Appl. Phys. 76:3479

    Article  ADS  Google Scholar 

  19. Hoinkes H (1980) Rev. Mod. Phys. 52:933

    Article  ADS  Google Scholar 

  20. Clementi E, Raimondi DL, Reinhardt WP (1967) J. Chem. Phys. 47:1300

    Article  ADS  Google Scholar 

  21. Magnier S, Aubert-Frécon M (2002) J. Quantum Spectros. Radiat. Transfer 75:121

    Article  ADS  Google Scholar 

  22. Chevrollier M et al. (1997) Opt. Commun. 136:22

    Article  ADS  Google Scholar 

  23. Mackie M, Javanainen J (1999) Phys. Rev. A 60:3174

    Article  ADS  Google Scholar 

  24. The Morse potential used in our calculations reproduces these behaviors because it was adjusted to the physical potential (see Sect. 2)

  25. Vardi A, Abrashkevich D, Frishman E, Shapiro M (1997) J. Chem. Phys. 107:6166

    Article  ADS  Google Scholar 

  26. Passerat de Silans T, Oriá M, Chevrollier M, to be published

  27. van Kessel O et al. (1992) Nucl. Instrum. Methods Phys. Res. B 64:593

    Article  ADS  Google Scholar 

  28. Henkel C, Pötting S, Wilkens M (1999) Appl. Phys. B 69:379

    Article  ADS  Google Scholar 

  29. In Ref. [7], ultra-cold atoms from a Bose–Einstein condensate probe surface-based electric fields, but the authors used a glass surface as the only dielectric material. See also Lin Y-J, Teper I, Chin C, Vuletic V, Phys. Rev. Lett. 92:050404 (2004)

  30. Gortel ZW, Kreuzer HJ, Teshima R (1980) Phys. Rev. B 22:5655

    Article  ADS  Google Scholar 

  31. Vargas MC, Mochán WL (1998) Surf. Sci. 409:130

    Article  ADS  Google Scholar 

  32. Vollbrecht KGH, Solano E, Cirac JI (2004) Phys. Rev. Lett. 93:220502

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chevrollier.

Additional information

PACS

34.50.Dy; 68.43.-h; 68.35.Ja; 32.80.Pj

Rights and permissions

Reprints and permissions

About this article

Cite this article

Passerat de Silans, T., Farias, B., Oriá, M. et al. Laser-induced quantum adsorption of neutral atoms in dielectric surfaces. Appl. Phys. B 82, 367–371 (2006). https://doi.org/10.1007/s00340-005-2007-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-2007-y

Keywords

Navigation