Skip to main content
Log in

Controlling a bunch of multiple filaments by means of a beam diameter

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a three orders of magnitude increase and stability in the backscattered fluorescence signal from nitrogen molecules by terawatt femtosecond laser pulse induced air filaments using a new method. The method is based on squeezing the initial beam diameter using a telescope. The effect of laser shot-to-shot fluctuations was included in numerical simulations by a random distribution of the initial intensity in both squeezed and non-squeezed beams. Statistical processing of the simulation results shows that the average diameter of plasma channels as well as the total amount of free electrons generated in a bunch of multiple filaments in air is larger in the squeezed beam. Shot-to-shot stability of the simulated plasma density increases in the squeezed beam. The change of this plasma density with propagation distance is in good qualitative agreement with the change of the range-corrected nitrogen fluorescence signal with distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braun A, Korn G, Liu X, Du D, Mourou G (1995) Opt Lett 20:73

    ADS  Google Scholar 

  2. Nibbering ETJ, Gurley PF, Grillon G, Prade BS, Franco MA, Salif F, Mysyrowicz A (1996) Opt Lett 21:62

    ADS  Google Scholar 

  3. Brodeur A, Kosareva OG, Chien CY, Ilkov FA, Kandidov VP, Chin SL (1997) Opt Lett 22:304

    ADS  Google Scholar 

  4. Wöste L, Wedekind C, Wille H, Rairoux P, Stein B, Nikolov S, Werner C, Niedermeier S, Ronneberger F, Schillinger H, Sauerbrey R (1997) Laser Optoelectron 5:29

    Google Scholar 

  5. Davis KM, Miura K, Sugimoto N, Hirao K (1996) Opt Lett 21:1729

    Article  ADS  Google Scholar 

  6. Yamada K, Watanabe W, Toma T, Itoh K, Nishii J (2001) Opt Lett 26:19

    Article  ADS  Google Scholar 

  7. Sudrie L, Couairon A, Franco M, Lamouroux B, Prade B, Tzortzakis S, Mysyrowicz A (2002) Phys Rev Lett 89:18

    Article  Google Scholar 

  8. Saliminia A, Nguyen NT, Nadeau M-C, Petit S, Chin SL, Vallée R (2003) J Appl Phys 93:3724

    Article  ADS  Google Scholar 

  9. Liu W, Kosareva O, Golubtsov IS, Iwasaki A, Becker A, Kandidov VP, Chin SL (2003) Appl Phys B 76:215

    Article  ADS  Google Scholar 

  10. Liu W, Chin SL, Kosareva O, Golubtsov IS, Kandidov VP (2003) Opt Commun 225:193

    Article  ADS  Google Scholar 

  11. Saliminia A, Nguyen NT, Chin SL, Vallée R (2004) Opt Commun 241:529

    Article  ADS  Google Scholar 

  12. Bernstein AC, Luk TS, Nelson TR, Mcpherson A, Diels J-C, Cameron SM (2002) Appl Phys B 75:119

    Article  ADS  Google Scholar 

  13. Hauri CP, Kornelis W, Helbing FW, Heinrich A, Couairon A, Mysyrowicz A, Biegert J, Keller U (2004) Appl Phys B 79:673

    Article  ADS  Google Scholar 

  14. Kandidov VP, Kosareva OG, Koltun AA (2003) Quantum Electron 33:69

    Article  Google Scholar 

  15. Courvoisier F, Boutou V, Kasparian J, Salmon E, Méjean G, Yu J, Wolf J-P (2003) Appl Phys Lett 83:213

    Article  ADS  Google Scholar 

  16. Skupin S, Bergé L, Peschel U, Lederer F (2004) Phys Rev Lett 93:023901

    Article  PubMed  ADS  Google Scholar 

  17. Liu W, Théberge F, Arévalo E, Gravel J-F, Becker A, Chin SL (2005) Opt. Lett. 30:2602

    Article  PubMed  ADS  Google Scholar 

  18. Mlejnek M, Kolesik M, Moloney JV, Wright EM (1999) Phys Rev Lett 83:2938

    Article  ADS  Google Scholar 

  19. Marburger JH (1975) Prog Quantum Electron 4:35

    Article  ADS  Google Scholar 

  20. Bergé L, Skupin S, Lederer F, Méjean G, Yu J, Kasparian J, Salmon E, Wolf JP, Rodriguez M, Wöste L, Bourayou R, Sauerbrey R (2004) Phys Rev Lett 92:225002

    Article  PubMed  ADS  Google Scholar 

  21. Liu W, Hosseini SA, Luo Q, Ferland B, Chin SL, Kosareva OG, Panov NA, Kandidov VP, New J Phys 6:6 (2004) [http://www.iop.org/EJ/toc/1367-2630/6/1]

    Google Scholar 

  22. Hosseini SA, Luo Q, Ferland B, Liu W, Chin SL, Kosareva OG, Panov NA, Aközbek N, Kandidov VP (2004) Phys Rev A 70:033802

    Article  ADS  Google Scholar 

  23. Ackermann R, Stelmaszczyk K, Rohwetter P, Méjean G, Salmon E, Yu J, Kasparian J, Méchain G, Bergmann V, Schaper S, Weise B, Kumm T, Rethmeier K, Kalkner W, Wolf JP, Wöste L (2004) Appl Phys Lett 82:5781

    Article  ADS  Google Scholar 

  24. Rodriguez M, Bourayou R, Méjean G, Kasparian J, Yu J, Salmon E, Scholz A, Stecklum B, Eisloffel J, Laux U, Hatzes AP, Sauerbrey R, Wöste L, Wolf J-P (2004) Phys Rev E 69:036607

    Article  ADS  Google Scholar 

  25. Akozbek N, Iwasaki A, Becker A, Scalora M, Chin SL, Bowden CM (2002) Phys Rev Lett 89:143901

    Article  PubMed  ADS  Google Scholar 

  26. Bergé L, Skupin S, Méjean G, Kasparian J, Yu J, Frey S, Salmon E, Wolf JP (2005) Phys Rev E 71:016602

    Article  ADS  Google Scholar 

  27. Oishi Y, Suda A, Midorikawa K, Kannari F (2005) Rev. Sci. Instrum. 76:093114

    Article  ADS  Google Scholar 

  28. Babin AA, Kartashov DV, Kiselev AM, Lozhkarev VV, Stepanov AN, Sergeev AM (2002) Appl Phys B 75:509

    Article  ADS  Google Scholar 

  29. Liu X, Rottke H, Eremina E, Sandner W, Goulielmakis E, Keeffe KO, Lezius M, Krausz F, Lindner F, Schätzel MG, Paulus GG, Walther H (2004) Phys Rev Lett 93:263001

    Article  PubMed  ADS  Google Scholar 

  30. Alnaser AS, Tong XM, Osipov T, Voss S, Maharjan CM, Ranitovic P, Ulrich B, Shan B, Chang Z, Lin CD, Cocke CL (2004) Phys Rev Lett 93:183202

    Article  PubMed  ADS  Google Scholar 

  31. Rairoux P, Schillinger H, Niedermeier S, Rodriguez M, Ronneberger F, Sauerbrey R, Stein B, Waite D, Wedekind C, Wille H, Wöste L, Ziener C (2000) Appl Phys B 71:573

    Article  ADS  Google Scholar 

  32. Golubtsov IS, Kandidov VP, Kosareva OG (2003) Quantum Electron 33:525

    Article  Google Scholar 

  33. Méchain G, Couairon A, Franco M, Prade B, Mysyrowicz A (2004) Phys Rev Lett 93:035003

    Article  PubMed  ADS  Google Scholar 

  34. Skupin S, Bergé L, Peschel U, Lederer F, Méjean G, Yu J, Kasparian J, Salmon E, Wolf JP, Rodriguez M, Wöste L, Bourayou R, Sauerbrey R (2004) Phys Rev E 70:046602

    Article  ADS  Google Scholar 

  35. Schroeder H, Liu J, Chin SL (2004) Opt Express 12:4768

    Article  ADS  Google Scholar 

  36. Kandidov VP, Akozbek N, Scalora M, Kosareva OG, Nyakk AV, Luo Q, Hosseini SA, Chin SL (2004) Appl Phys B 80

  37. Fibich G, Eisenmann S, Ilan B, Zigler A (2004) Opt Lett 29:1772

    Article  PubMed  ADS  Google Scholar 

  38. Luo Q, Hosseini SA, Liu W, Gravel J-F, Kosareva OG, Panov NA, Akozbek N, Kandidov VP, Roy G, Chin SL (2004) Appl Phys B 80:35

    Article  ADS  Google Scholar 

  39. Gravel J-F, Luo Q, Boudreau D, Tang XP, Chin SL (2004) Anal Chem 76:4799

    Article  PubMed  Google Scholar 

  40. Luo Q, Liu W, Chin SL (2003) Appl Phys B 76:337

    Article  ADS  Google Scholar 

  41. Iwasaki A, Akozbek N, Ferland B, Luo Q, Roy G, Bowden CM, Chin SL (2003) Appl Phys B 76:231

    Article  ADS  Google Scholar 

  42. Chin SL, Petit S, Liu W, Iwasaki A, Nadeau M-C, Kandidov VP, Kosareva OG, Andrianov KY (2002) Opt Commun 210:329

    Article  ADS  Google Scholar 

  43. Mlejnek M, Wright EM, Moloney JV (1998) Opt Lett 23:382

    ADS  Google Scholar 

  44. Perelomov AM, Popov VS, Terent’ev MV (1966) Sov Phys JETP 23:924

    ADS  Google Scholar 

  45. Talebpour, Yang J, Chin SL (1999) Opt Commun 163:29; Corrections to this reference: there are two printing errors in this paper. In Eq. (2) Z should read Zeff, and in Eq. (8) Wm should be wm. The × sign should be omitted

  46. Akozbek N, Scalora M, Bowden CM, Chin SL (2001) Opt Commun 191:353

    Article  ADS  Google Scholar 

  47. Kandidov VP, Golubtsov IS, Kosareva OG (2004) Quantum Electron 34:348

    Article  Google Scholar 

  48. Kosareva OG, Panov NA, Kandidov VP (2005) Atmos Ocean Opt (in Russian) 18:223

    Google Scholar 

  49. Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Pepin H, Kieffer JC, Mercure HP (2002) Appl Spectrosc 56:1444

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.G. Kosareva.

Additional information

PACS

42.65.Jx; 42.60.Jf; 42.68.Ay; 42.68.Wt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kosareva, O., Panov, N., Akozbek, N. et al. Controlling a bunch of multiple filaments by means of a beam diameter. Appl. Phys. B 82, 111–122 (2006). https://doi.org/10.1007/s00340-005-1958-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1958-3

Keywords

Navigation