Skip to main content
Log in

All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Ultraviolet radiation around 302 nm was produced by sum-frequency generation in beta-barium borate employing a blue and a near-infrared diode laser. The diode-laser-based spectrometer has a mode-hop-free tuning range of 50 GHz and was used for high-resolution spectroscopic detection of sulfur dioxide. Differential measurements of several gas concentrations, at low pressure as well as at ambient atmospheric pressure, were demonstrated. The detection limit in the first implementation of the instrument was about 20 ppm m at atmospheric pressure, essentially limited by interference fringes. Methods for greatly improving this limit are suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Capasso, IEEE J. Sel. Top. Quantum Electron. 38, 511 (2002)

    Article  Google Scholar 

  2. S. Nakamura, G. Fasol, The Blue Laser Diodes (Springer, Heidelberg, 1997)

    Google Scholar 

  3. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, J. Quantum Spectrosc. Radiat. Transfer 60, 665 (1998)

    Article  Google Scholar 

  4. U. Gustafsson, J. Sandsten, S. Svanberg, Appl. Phys. B 71, 853 (2000)

    Google Scholar 

  5. J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000)

    Article  Google Scholar 

  6. L. Corner, J.S. Gibb, G. Hancock, A. Hutchinson, V.L. Kasyutich, R. Peverall, G.A.D. Ritchie, Appl. Phys. B 74, 441 (2002)

    Article  Google Scholar 

  7. T. Laurila, R. Hernberg, Appl. Phys. B 83, 845 (2003)

    Google Scholar 

  8. H.R. Barry, B. Bakowsky, L. Corner, T. Freegarde, O.T.W. Hawkins, G. Hancock, R.M.J. Jacobs, R. Peverall, G.A.D. Ritchie, Chem. Phys. Lett. 319, 125 (2000)

    Article  Google Scholar 

  9. J. Franzke, R.W. Fox, L. Hollberg, Spectrochim. Acta Part B 53, 1951 (1998)

    Article  Google Scholar 

  10. K.P. Koch, W. Lahmann, Appl. Phys. Lett. 32, 289 (1978)

    Article  Google Scholar 

  11. J. Orphal, K. Chance, J. Quantum Spectrosc. Radiat. Transfer 82, 491 (2003)

    Article  Google Scholar 

  12. G.D. Boyd, D.A. Kleinman, J. Appl. Phys. 39, 3597 (1968)

    Article  Google Scholar 

  13. K. Sugiyama, J. Yoda, T. Sakurai, Opt. Lett. 16, 449 (1991)

    Google Scholar 

  14. Y.X. Fan, R.C. Eckhardt, R.L. Byer, C. Chen, A.D. Jiang, IEEE J. Quantum Electron. QE-25, 1196 (1989)

    Article  Google Scholar 

  15. R.S. Conroy, J.J. Hewett, G.P.T. Lancaster, W. Sibbett, J.W. Allen, K. Dholokia, Opt. Commun. 175, 185 (2000)

    Article  Google Scholar 

  16. H. Leinen, D. Glässner, H. Metcalf, R. Wynands, D. Haubrich, D. Meschede, Appl. Phys. B 70, 567 (2000)

    Article  Google Scholar 

  17. A.C. Vandaele, P.C. Simon, J.M. Guilmot, M. Carleer, R. Colin, J. Geophys. Res. 99, 25,599 (1994)

    Article  Google Scholar 

  18. S. Svanberg, in Air Monitoring by Spectroscopic Techniques, ed. by M.W. Sigrist (Wiley, New York, 1994), pp. 85–161

    Google Scholar 

  19. B. Galle, C. Oppenheimer, A. Geyer, A.J.S. McGonigle, M. Edmonds, L. Horrocks, J. Volcanol. Geotherm. Res. 119, 241 (2002)

    Article  Google Scholar 

  20. P. Kauranen, H.M. Hertz, S. Svanberg, Opt. Lett. 19, 1489 (1994)

    Google Scholar 

  21. J.-P. Meyn, M.M. Fejer, Opt. Lett. 22, 1214 (1997)

    Google Scholar 

  22. G. Somesfalean, M. Sjöholm, L. Persson, H. Gao, T. Svensson, S. Svanberg, Appl. Phys. Lett. 86, 184102 (2005)

    Article  Google Scholar 

  23. D.J. Lonsdale, A.P. Willis, T.A. King, Meas. Sci. Technol. 13, 488 (2002)

    Google Scholar 

  24. G. Somesfalean, J. Alnis, U. Gustafsson, H. Edner, S. Svanberg, Appl. Opt., in press (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Svanberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somesfalean, G., Zhang, Z.G., Sjöholm, M. et al. All-diode-laser ultraviolet absorption spectroscopy for sulfur dioxide detection. Appl. Phys. B 80, 1021–1025 (2005). https://doi.org/10.1007/s00340-005-1835-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1835-0

PACS

Navigation