Skip to main content
Log in

Rotations of eigenvibration direction in anisotropic crystals

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The electric field of incident light induces dipoles in anisotropic media, vibrating in two perpendicular directions of the principal axes. Because of the tensor property of the dielectric constant, an induced dipole is subject to a torque, tending to rotate it about the axis parallel to the propagation direction. The directions of eigenvibration of the ordinary (o-ray) and extraordinary (e-ray) waves are no longer perpendicular in this sense. We propose here the relationships to describe the rotation of the induced dipole in the perpendicular electric fields. The rotation angles are found to increase with increasing dielectric constants and electric field strength of the incident light, exhibiting large values near the resonance frequencies in the infrared range at the azimuth angle π/4 of the polarized incident light. Piezoelectric and ferroelectric crystals have a large value of the dielectric constant in the infrared frequency range. Rotations of the vibration direction of the o-ray and the e-ray waves are shown in the infrared transmission spectra recorded by incidence of the polarized light and transmission through piezoelectric and ferroelectric crystals (α-quartz, LiNbO3, and LiTaO3). Interference of the o-ray and the e-ray waves transmitted through the crystals confirms the rotations of the vibration directions, a self-modulation effect of light in piezoelectric and ferroelectric crystals induced by the electric field of the propagating light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1984)

    Google Scholar 

  2. M. Abraham, R. Becker, The Classical Theory of Electricity and Magnetism (Blackie, London, 1944)

    Google Scholar 

  3. P.S. Epstein, Ann. Phys. 44, 593 (1914)

    CAS  Google Scholar 

  4. R.A. Beth, Phys. Rev. 50, 115 (1936)

    Article  Google Scholar 

  5. M.E.J. Friese, T.A. Nieminen, N.R. Heckenberg, H. Rubinsztein-Dunlop, Nature 394, 348 (1998)

    Article  CAS  Google Scholar 

  6. A. Ashkin, J.M. Dziedzic, Science 235, 1517 (1987)

    CAS  PubMed  Google Scholar 

  7. V. Garcés-Chávez, D. McGloin, M.J. Padgett, W. Dultz, H. Schmitzer, K. Dholakia, Phys. Rev. Lett. 91, 093602 (2003)

    Article  PubMed  Google Scholar 

  8. A.L. Porta, M.D. Wang, Phys. Rev. Lett. 19, 190 801 (2004)

    Google Scholar 

  9. A.I. Bishop, T.A. Nieminen, N.R. Hechenberg, H. Rubinsztein-Dunlop, Phys. Rev. Lett. 19, 198 104 (2004)

    Google Scholar 

  10. S. Stenholm, Rev. Mod. Phys. 58, 699 (1986)

    Article  CAS  Google Scholar 

  11. A. Ashkin, Science 210, 1081 (1980)

    CAS  Google Scholar 

  12. W.S. Ryu, R.M. Berry, H.C. Berg, Nature 403, 444 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. D.G. Grier, Nature 424, 810 (2003)

    Article  CAS  PubMed  Google Scholar 

  14. C.Z. Tan, T.B. Wang, H. Chen, Z.G. Liu, Opt. Lett. 28, 1466 (2003)

    CAS  PubMed  Google Scholar 

  15. C.J.F. Böttcher, Theory of Electric Polarization, vol. 1 (Elsevier, Amsterdam, 1973)

    Google Scholar 

  16. C.Z. Tan, Solid State Commun. 131, 405 (2004)

    Article  CAS  Google Scholar 

  17. W.G. Spitzer, R.C. Miller, D.A. Kleinman, L.E. Howarth, Phys. Rev. 126, 1710 (1962)

    Article  CAS  Google Scholar 

  18. C.Z. Tan, L. Cao, T.B. Wang, Mater. Res. Bull. 38, 1519 (2003)

    Article  CAS  Google Scholar 

  19. C.Z. Tan, J. Non-Cryst. Solids 223, 158 (1998)

    CAS  Google Scholar 

  20. C.Z. Tan, J. Arndt, J. Phys. Chem. Solids 62, 1087 (2001)

    Article  CAS  Google Scholar 

  21. E.D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985)

    Google Scholar 

  22. W.L. Bond, J. Appl. Phys. 36, 1674 (1965)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Z. Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, C.Z. Rotations of eigenvibration direction in anisotropic crystals. Appl. Phys. B 80, 875–880 (2005). https://doi.org/10.1007/s00340-005-1795-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-005-1795-4

PACS

Navigation