Skip to main content
Log in

Plasma density gratings induced by intersecting laser pulses in underdense plasmas

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Electron and ion density gratings induced by two intersecting ultrashort laser pulses at intensities of 1016 W/cm2 or lower are investigated. The ponderomotive force generated by the inhomogeneous intensity distribution in the intersecting region of the interfering pulses produces deep electron and ion density modulations at a wavelength less than a laser wavelength in vacuum. Dependence of the density modulation on the plasma densities, temperatures, and the ion mass, as well as the laser pulse parameters are studied analytically and by particle-in-cell simulations. It is found that the density peaks of such gratings can be a few times that of the initial plasma density and last as long as a few picoseconds. It is also demonstrated that the scattering of signal pulses by such a bulk density grating results in high-harmonic generation. The density gratings may be incorporated into ion-ripple lasers [K.R. Chen and J.M. Dawson, Phys. Rev. Lett. 68, 29 (1992)] to generate ultrashort X-ray pulses of a few angstroms by using electron beams at only a few tens of MeV only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Nebenzahl, A. Ron, N. Rostoker: Phys. Rev. Lett. 60, 1030 (1988)

    Article  ADS  Google Scholar 

  2. J.X. Ma, R. Chen, Z. Xu, J. Op. Soc. Am. B 8, 1442 (1991)

  3. G. Shvets, N.J. Fisch, A. Pukhov, J. Meyer-ter-Vehn: Phys. Rev. Lett. 81, 4879 (1998); Y. Ping, I. Geltner, N.J. Fisch, G. Shvets, S. Suckewer: Phys. Rev. E 62, R4532 (2000)

    Article  ADS  Google Scholar 

  4. V.M. Malkin, G. Shvets, N.J. Fisch: Phys. Plasmas 7, 2232 (2000)

    Article  ADS  Google Scholar 

  5. G. Shvets, A. Pukhov: Phys. Rev. E. 59, 1033 (1999)

    Article  ADS  Google Scholar 

  6. C.J. McKinstrie, J.S. Li, R.E. Giacone, H.X. Vu: Phys. Plasmas 3 2686 (1996); ibid. 5, 1142 (1998)

  7. W.L. Kruer, S.C. Wilks, B.B. Afeyan, R.K. Kirkwood: Phys. Plasmas 3, 382 (1996); V.V. Eliseev, W. Rozmus, V.T. Tikhonchuk, C.E. Capjack: ibid. 3, 2215 (1996); H.A. Rose, S. Ghosal, ibid. 5, 1461 (1998); C. Labaune, H.A. Baldis, B. Cohen, W. Rozmus, S. Depierreux, E. Schifano, B.S. Bauer, A. Michard: ibid. 6, 2048 (1999); K.B. Wharton, R.K. Kirkwood, S.H. Glenzer, K.G. Estabrook, B.B. Afeyan, B.I. Cohen, J.D. Moody, B.J. MacGowan, C. Joshi: ibid. 6, 2144 (1999)

    Article  ADS  Google Scholar 

  8. C. Ren, R.G. Hemker, R.A. Fonseca, B.J. Duda, W.B. Mori: Phys. Rev. Lett. 85, 2124 (2000); Phys. Rev. E 64, 067401 (2001); Phys. Plasmas 9, 2354 (2002)

    Article  ADS  Google Scholar 

  9. Q.L. Dong, Z.-M. Sheng, J. Zhang: Phys. Rev. E 66, 027402 (2002)

    Article  ADS  Google Scholar 

  10. M.N. Rosenbluth, C.S. Liu: Phys. Rev. Lett. 29, 701 (1972); T. Tajima, J.M. Dawson: Phys. Rev. Lett. 43, 267 (1979); R.J. Noble: Phys. Rev. A 32, 460 (1985)

    Article  ADS  Google Scholar 

  11. D. Umstadter, E. Esarey, J. Kim: Phys. Rev. Lett. 72, 1224 (1994); V.I. Berezhziani, I.G. Murusidze, Physica Scripta 45, 87 (1992); S. Dalla, M. Lontano: Phys. Rev. E 49, R1819 (1994); G. Bonnaud, D. Teychenne, J.L. Bobin: Phys. Rev. E 50, R36 (1994)

    Article  ADS  Google Scholar 

  12. D. Umstadter J.K. Kim, E. Dodd: Phys. Rev. Lett. 76, 2073 (1996); E. Esarey, R.F. Hubbard, W.P. Leemans, A. Ting, P. Sprangle: Phys. Rev. Lett. 79, 2682 (1997)

    Article  ADS  Google Scholar 

  13. G. Shvets, N.J. Fisch, A. Pukhov, J. Meyer-ter-Vehn: Phys. Rev. E 60, 2218 (1999)

    Article  ADS  Google Scholar 

  14. Z.-M. Sheng, K. Mima, Y. Sentoku, K. Nishihara, J. Zhang: Phys. Plasmas 9, 3147 (2002)

    Article  ADS  Google Scholar 

  15. Z.-M. Sheng, K. Mima, Y. Sentoku, M.S. Jovanovic, T. Taguchi, J. Zhang, J. Meyer-ter-Vehn: Phys. Rev. Lett. 88, 055004 (2002)

    Article  ADS  Google Scholar 

  16. L. Plaja, L. Roso: Phys. Rev. E 56, 7142 (1997)

    Article  ADS  Google Scholar 

  17. A.A. Andreev, K.Yu. Platonov, R.R.E. Salomaa: Phys. Plasmas 9, 581 (2002)

    Article  ADS  Google Scholar 

  18. R. Lichters, J. Meyer-ter-Vehn, A. Pukhov: Phys. Plasmas 3, 3425 (1996)

    Article  ADS  Google Scholar 

  19. P. Gibbon: Phys. Rev. Lett. 76, 50 (1996)

    Article  ADS  Google Scholar 

  20. D. von der Linde, K. Rzàzewski: Appl. Phys. B 63, 499 (1996)

    Article  ADS  Google Scholar 

  21. S. Kohlweyer, G.D. Tsakiris, C.G. Wahlström, C. Tillman, I. Mercer: Opt. Commum. 177, 431 (1995)

    Article  ADS  Google Scholar 

  22. P.A. Norreys, M. Zepf, S. Moustaizis, A.P. Fews, J. Zhang, P. Lee, M. Bakarezos, C.N. Danson, A. Dyson, P. Gibbon, P. Loukakos, D. Neely, F.N. Walsh, J.S. Wark, A.E. Dangor: Phys. Rev. Lett. 76, 1832 (1996)

    Article  ADS  Google Scholar 

  23. M. Zepf, G.D. Tsakiris, G. Pretzler, I. Watts, D.M. Chambers, P.A. Norreys, U. Andiel, A.E. Dangor, K. Eidmann, C. Gahn, A. Machacek, J.S. Wark, K. Witte: Phys. Rev. E 58, R5253 (1998)

  24. D. von der Linde: Appl. Phys. B 68, 315 (1999); A. Tarasevitch, A. Orisch, D. von der Linde, P. Balcou, G. Rey, J.-P. Chambaret, U. Teubner, D. Klöpfel, W. Theobald: Phys. Rev. A 62, 023816 (2000)

    Article  ADS  Google Scholar 

  25. U. Teubner, G. Pretzler, T. Schlegel, K. Eidmann, E. Förster, K. Witte: Phys. Rev. A 67, 013816 (2003)

    Article  ADS  Google Scholar 

  26. H. Kalt, V.G. Lyssenko, R. Renner, C. Klingshirn: J. Opt. Soc. Am. B 7, 1188 (1985), and refs. therein

    Article  ADS  Google Scholar 

  27. T.H. Metzger, K. Haj-Yahya, J. Peisi, M. Wendel, H. Lorenz, J.P. Kotthaus: J. Appl. Phys. 81, 1212 (1997)

    Article  ADS  Google Scholar 

  28. D. Walgraef, N.M. Ghoniem: J. Comp.-Aided Mat. Des. 6, 323 (1999)

    Article  ADS  Google Scholar 

  29. T. Schneider, D. Wolfframm, R. Mitzner, J. Reif: Appl. Phys. B 68, 749 (1999)

    Article  ADS  Google Scholar 

  30. D.E. Govoni, J.A. Booze, A. Sinha, F.F. Crim: Chem. Phys. Lett. 216, 525 (1993); J.A. Booze, D.E. Govoni, F.F. Crim: J. Chem. Phys. 103, 10484 (1995); A.G. Gorshunov, V. N. Grigor’ev, V.I. Grinev, K.L. Litvinenko, V.G. Lysenko, JETP 82, 356 (1996); D.N. Kozlov, R. Bombach, B. Hemmrling, W. Hubschmid: Opt. Lett. 22, 46 (1997)

    Article  ADS  Google Scholar 

  31. J.M. Rax, N.J. Fisch: Phys. Rev. Lett. 69, 772 (1992); IEEE Trans. Plasma Sci. 21, 105 (1993)

    Article  ADS  Google Scholar 

  32. M. Botton, A. Ron: Phys. Rev. Lett. 66, 2468 (1991)

    Article  ADS  Google Scholar 

  33. H. Kupershmidt, A. Ron: Appl. Phys. Lett. 63, 1733 (1993)

    Article  ADS  Google Scholar 

  34. K.R. Chen, J.M. Dawson: Phys. Rev. Lett. 68, 29 (1992), K.R. Chen, J.M. Dawson: Phys. Rev. A 65, 4077 (1992)

    Article  ADS  Google Scholar 

  35. S.L. Voronov, I. Kohl, J.B. Madsen, J. Simmons, N. Terry, J. Titensor, Q. Wang, J. Peatross: Phys. Rev. Lett. 87, 133902 (2001)

    Article  ADS  Google Scholar 

  36. K. Mima: private communications (2003)

  37. P. Sprangle, E. Esarey, J. Krall, G. Joyce: Phys. Rev. Lett. 69, 2200 (1992)

    Article  ADS  Google Scholar 

  38. Z.-M. Sheng, J. Meyer-ter-Vehn, A. Pukhov: Phys. Plasmas 5, 3764 (1998)

    Article  ADS  Google Scholar 

  39. If assuming that it is an adiabatic process, then one obtains ne≈Zni≈(2μ/3)1/2n0[C-cos(2kx)]1/2 in the quasi-neutrality approximation. Thus there is C≥1. In this case, one finds that the particle number conservation cannot be satisfied

  40. H.A. Haus: Waves and Fields in Optoelectronics (Prentice-Hall, Inc., Englewood Cliffs, New Jersey 1984) Chapt. 9

  41. E. Esarey, A. Ting, P. Sprangle, D. Umstadter, X. Liu: IEEE Trans. Plasma Sci. 21, 95 (1993); W.B. Mori, C.D. Decker, W.P. Leemann: ibid. 21, 110 (1993); B. Shen, W. Yu, G. Zeng, Z. Xu: Phys. Plasmas 2, 4631 (1995)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z.-M. Sheng.

Additional information

PACS

52.35.Mw; 42.65.Ky; 52.25.Os

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, ZM., Zhang, J. & Umstadter, D. Plasma density gratings induced by intersecting laser pulses in underdense plasmas. Appl. Phys. B 77, 673–680 (2003). https://doi.org/10.1007/s00340-003-1324-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-003-1324-2

Keywords

Navigation