Skip to main content
Log in

Magnesium- and copper-substituted strontium–aluminium–hexaferrite (SrAl2Fe10O19): synthesis and scrutiny

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The strontium–aluminium–hexaferrite was substituted with the divalent ions (Mg/Cu) with the chemical formula of Sr1–xMxAl2Fe10O19 (M = Mg, Cu; x = 0.1, 0.2), and all the samples were synthesized via sol–gel auto combustion method. The thermal studies disclosed endothermic and exothermic peaks and showed magnetic phase transition behaviour in the range of 350–450 °C. The particles are shaped in a hexagonal structure with space group P63/mmc and the crystallize size ranges between 44 and 53 nm. The field-emission scanning microscopy revealed the platelet-like morphology of the particles. The magnetic studies disclosed the fine range of magnetic saturation (40.87–49.76 emu/g) and coercivity values (4619–7647 Oe). The particles own single-domain arrangement and decent energy product value (0.32–0.38 MGOe), implying their potential application in permanent magnets. The lower dielectric constant values at high-frequency range suggest their potential employment in microwave applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Availability of data and materials

Not applicable.

Code availability

Not applicable.

References

  1. M.A. Almessiere, Y. Slimani, H. Güngüneş, A.D. Korkmaz, T. Zubar, S. Trukhanov, A. Trukhanov, A. Manikandan, F. Alahmari, A. Baykal, Influence of Dy3+ions on the microstructures and magnetic, electrical, and microwave properties of [Ni0.4Cu0.2Zn0.4](Fe2–xDyx)O4(0.00 ≤ x ≤ 0.04) Spinel Ferrites. ACS Omega 6, 10266–10280 (2021). https://doi.org/10.1021/acsomega.1c00611

    Article  Google Scholar 

  2. M.A. Almessiere, Y. Slimani, A.V. Trukhanov, A. Baykal, H. Gungunes, E.L. Trukhanova, S.V. Trukhanov, V.G. Kostishin, Strong correlation between Dy3+ concentration, structure, magnetic and microwave properties of the [Ni0.5Co0.5](DyxFe2x)O4 nanosized ferrites. J. Ind. Eng. Chem. 90, 251–259 (2020). https://doi.org/10.1016/j.jiec.2020.07.020

    Article  Google Scholar 

  3. R.C. Pullar, Hexagonal ferrites: a review of the synthesis, properties and applications of hexaferrite ceramics. Prog. Mater. Sci. 57, 1191–1334 (2012). https://doi.org/10.1016/j.pmatsci.2012.04.001

    Article  Google Scholar 

  4. Z. Saeed, B. Azhdar, Influence of high temperature on the crystal structure of SrFe12O19 nanoparticle. J. Nanomater.Nanomater. (2022). https://doi.org/10.1155/2022/5467020

    Article  Google Scholar 

  5. E. Kiani, A.S.H. Rozatian, M.H. Yousefi, Synthesis and characterization of SrFe12O19 nanoparticles produced by a low-temperature solid-state reaction method. J. Mater. Sci. Mater. Electron. 24, 2485–2492 (2013). https://doi.org/10.1007/s10854-013-1122-5

    Article  Google Scholar 

  6. K. Kamishima, T. Mashiko, K. Kakizaki, M. Sakai, K. Watanabe, H. Abe, Synthesis and magnetic characterization of Sr-based Ni2X-type hexaferrite. AIP Adv. (2015). https://doi.org/10.1063/1.4934792

    Article  Google Scholar 

  7. S.P. Dalawai, T.J. Shinde, A.B. Gadkari, N.L. Tarwal, J.H. Jang, P.N. Vasambekar, Influence of Sn4+ on structural and DC electrical resistivity of Ni-Zn ferrite thick films. J. Electron. Mater. 46, 1427–1438 (2017). https://doi.org/10.1007/s11664-016-5167-0

    Article  ADS  Google Scholar 

  8. A.R. Makhdoom, F. Ahmed, U.R. Ghori, Q.A. Ranjha, K.A. Rao, A. Javed, M.E. Mazhar, M. Bukhari, A. Maqsood, S.U. Asif, M.W. Khan, Tuning magnetic properties in the Ce–Al Co-substituted M-type BaSr (6:4) hexaferrites. J. Mater. Sci. Mater. Electron. 33, 7266–7274 (2022). https://doi.org/10.1007/s10854-022-07915-5

    Article  Google Scholar 

  9. K.S. Jithendra Kumara, G. Krishnamurthy, N. Sunil-Kumar, N. Naik, T.M. Praveen, Sustainable synthesis of magnetically separable SiO2/Co@Fe2O4 nanocomposite and its catalytic applications for the benzimidazole synthesis. J. Magn. Magn. Mater.Magn. Magn. Mater. 451, 808–821 (2018). https://doi.org/10.1016/j.jmmm.2017.10.125

    Article  ADS  Google Scholar 

  10. M.A. Malana, R.B. Qureshi, M.N. Ashiq, M.F. Ehsan, Synthesis, structural, magnetic and dielectric characterizations of molybdenum doped calcium strontium M-type hexaferrites. Ceram. Int. 42, 2686–2692 (2016). https://doi.org/10.1016/j.ceramint.2015.10.144

    Article  Google Scholar 

  11. A. Morel, J.M. Le Breton, J. Kreisel, G. Wiesinger, F. Kools, P. Tenaud, Sublattice occupation in Sr1-xLaxFe12-xCoxO19 hexagonal ferrite analyzed by Mössbauer spectrometry and Raman spectroscopy. J. Magn. Magn. Mater. 242–245, 1405–1407 (2002). https://doi.org/10.1016/S0304-8853(01)00962-3

    Article  ADS  Google Scholar 

  12. Z.F. Zi, Y.P. Sun, X.B. Zhu, Z.R. Yang, J.M. Dai, W.H. Song, Structural and magnetic properties of SrFe12O19 hexaferrite synthesized by a modified chemical co-precipitation method. J. Magn. Magn. Mater. 320, 2746–2751 (2008). https://doi.org/10.1016/j.jmmm.2008.06.009

    Article  ADS  Google Scholar 

  13. M. Naeem, M. Javed, I. Hussain, Structural, magnetic and dielectric properties of Zr–Cd substituted strontium hexaferrite (SrFe12O19) nanoparticles. J. Alloy. Compd. 487, 341–345 (2009). https://doi.org/10.1016/j.jallcom.2009.07.140

    Article  Google Scholar 

  14. M. Fu, Z. Zhu, Y. Zhou, W. Xu, W. Chen, Q. Liu, X. Zhu, Multifunctional pompon flower-like nickel ferrites as novel pseudocapacitive electrode materials and advanced absorbing materials. Ceram. Int. 46, 850–856 (2020). https://doi.org/10.1016/j.ceramint.2019.09.042

    Article  Google Scholar 

  15. M.W. Pieper, A. Morel, F. Kools, NMR analysis of La + Co doped M-type ferrites. J. Magn. Magn. Mater. 242–245, 1408–1410 (2002). https://doi.org/10.1016/S0304-8853(01)00963-5

    Article  ADS  Google Scholar 

  16. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, D. Kumar, Investigation of crystal structure, microstructure and low temperature magnetic behavior of Ce4+ and Zn2+ co-doped barium hexaferrites (BaFe12O19). RSC Adv. (2018). https://doi.org/10.1039/c8ra02455c

    Article  Google Scholar 

  17. M.A. Almessiere, B. Unal, A. Baykal, I. Ercan, Electrical properties of cerium and yttrium co-substituted strontium nanohexaferrites. J. Inorg. Organomet. Polym. Mater. 29, 402–415 (2019). https://doi.org/10.1007/s10904-018-1010-9

    Article  Google Scholar 

  18. J. Lakshmikantha, G. Krishnamurthy, R. Hanumantha-Nayak, M. Pari, N. Ranjitha, N. Naik, Synthesis, structure, thermal, magnetic, dielectric properties of Ce3+ doped M-type SrFe12O19 and electrochemical determination of L-cysteine. Inorg. Chem. Commun.. Chem. Commun. 146, 110175 (2022). https://doi.org/10.1016/j.inoche.2022.110175

    Article  Google Scholar 

  19. G. Asghar, M. Anis-Ur-Rehman, Structural, dielectric and magnetic properties of Cr-Zn doped strontium hexa-ferrites for high frequency applications. J. Alloys Compd. 526, 85–90 (2012). https://doi.org/10.1016/j.jallcom.2012.02.086

    Article  Google Scholar 

  20. S.M. El-Sayed, T.M. Meaz, M.A. Amer, H.A. El Shersaby, Magnetic behavior and dielectric properties of aluminum substituted M-type barium hexaferrite. Physica B Condens Matter. 426, 137–143 (2013). https://doi.org/10.1016/j.physb.2013.06.026

    Article  ADS  Google Scholar 

  21. A. Lohmaah, K. Chokprasombat, S. Pinitsoontorn, C. Sirisathitkul, Magnetic properties and morphology copper-substituted barium hexaferrites from sol-gel auto-combustion synthesis. Materials 14, 1–8 (2021). https://doi.org/10.3390/ma14195873

    Article  Google Scholar 

  22. S. Asiri, S. Güner, A. Demir, A. Yildiz, A. Manikandan, A. Baykal, Synthesis and magnetic characterization of Cu substituted barium hexaferrites. J. Inorg. Organomet. Polym. Mater. 28, 1065–1071 (2018). https://doi.org/10.1007/s10904-017-0735-1

    Article  Google Scholar 

  23. M.A. Almessiere, Y. Slimani, H.S. El Sayed, A. Baykal, Ca2+ and Mg2+ incorporated barium hexaferrites: structural and magnetic properties. J. Solgel. Sci. Technol. (2018). https://doi.org/10.1007/s10971-018-4853-1

    Article  Google Scholar 

  24. A. Davoodi, B. Hashemi, Magnetic properties of Sn-Mg substituted strontium hexaferrite nanoparticles synthesized via coprecipitation method. J. Alloys Compd. 509, 5893–5896 (2011). https://doi.org/10.1016/j.jallcom.2011.03.002

    Article  Google Scholar 

  25. L.A. Trusov, E.A. Gorbachev, V.A. Lebedev, A.E. Sleptsova, I.V. Roslyakov, E.S. Kozlyakova, A.V. Vasiliev, R.E. Dinnebier, M. Jansen, P.E. Kazin, Ca-Al double-substituted strontium hexaferrites with giant coercivity. Chem. Commun. 54, 479–482 (2018). https://doi.org/10.1039/c7cc08675j

    Article  Google Scholar 

  26. S.N. Rout, M.K. Manglam, J. Mallick, S. Datta, M. Kar, Magnetic anisotropy and (BH)max studies in microwave sintered Al-substituted strontium hexaferrite. Physica B Condens Matter. (2023). https://doi.org/10.1016/j.physb.2023.415134

    Article  Google Scholar 

  27. H. Luo, B.K. Rai, S.R. Mishra, V.V. Nguyen, J.P. Liu, Physical and magnetic properties of highly aluminum doped strontium ferrite nanoparticles prepared by auto-combustion route. J. Magn. Magn. Mater. 324, 2602–2608 (2012). https://doi.org/10.1016/j.jmmm.2012.02.106

    Article  ADS  Google Scholar 

  28. P. Kumar, A. Gaur, R.K. Kotnala, Magneto-electric response in Pb substituted M-type barium-hexaferrite. Ceram. Int. 43, 1180–1185 (2017). https://doi.org/10.1016/j.ceramint.2016.10.060

    Article  Google Scholar 

  29. M. Ishaque, M.A. Khan, I. Ali, M. Athair, H.M. Khan, M. Asif Iqbal, M.U. Islam, M.F. Warsi, Synthesis of nickel-zinc-yttrium ferrites: Structural elucidation and dielectric behavior evaluation. Mater. Sci. Semicond. Process.Semicond. Process. 41, 508–512 (2016). https://doi.org/10.1016/j.mssp.2015.10.028

    Article  Google Scholar 

  30. A. Gupta, P.K. Roy, Effect of Zn2+ ion substitution in Al3+-substituted rare-earth free Sr-hexaferrite for different permanent magnet applications. Inorg. Chem. Commun. 155, 111114 (2023). https://doi.org/10.1016/j.inoche.2023.111114

    Article  Google Scholar 

  31. G. Abbas, L. Zhang, W. Abbas, G. Murtaza, Magnetic and optical properties of Gd-Tl substituted M-type barium hexaferrites synthesized by co-precipitation technique. Curr. Appl. Phys. 19, 506–515 (2019). https://doi.org/10.1016/j.cap.2019.02.005

    Article  ADS  Google Scholar 

  32. V.E. Zhivulin, E.A. Trofimov, O.V. Zaitseva, D.P. Sherstyuk, N.A. Cherkasova, S.V. Taskaev, D.A. Vinnik, Y.A. Alekhina, N.S. Perov, D.I. Tishkevich, T.I. Zubar, A.V. Trukhanov, S.V. Trukhanov, Effect of configurational entropy on phase formation, structure, and magnetic properties of deeply substituted strontium hexaferrites. Ceram. Int. 49, 1069–1084 (2022). https://doi.org/10.1016/j.ceramint.2022.09.082

    Article  Google Scholar 

  33. F.M.M. Pereira, M.R.P. Santos, R.S.T.M. Sohn, J.S. Almeida, A.M.L. Medeiros, M.M. Costa, A.S.B. Sombra, Magnetic and dielectric properties of the M-type barium strontium hexaferrite (Ba xSr1-xFe12O19) in the RF and microwave (MW) frequency range. J. Mater. Sci. Mater. Electron. 20, 408–417 (2009). https://doi.org/10.1007/s10854-008-9744-8

    Article  Google Scholar 

  34. G.A. Al-garalleh, S.H. Mahmood, I. Bsoul, R. Loloee, Structural and magnetic properties of RE-Al substituted nanocrystalline hexaferrites Structural and magnetic properties of RE-Al substituted nanocrystalline hexaferrites ( Sr 1 − x RE x Al 2 Fe 10 O 19 ), 19 (n.d.) 0–12.

  35. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  36. G. Sriramulu, N. Maramu, B.R. Reddy, A. Kandasami, S. Katlakunta, Structural, magnetic and electromagnetic properties of microwave-hydrothermally synthesized Sr(Zr-Mn)2xFe12-2xO19 hexaferrites. Mater. Res. Bull. 149, 111732 (2022). https://doi.org/10.1016/j.materresbull.2022.111732

    Article  Google Scholar 

  37. G. Lal, K. Punia, H. Bhoi, S.N. Dolia, B.L. Choudhary, P.A. Alvi, S. Dalela, S.K. Barbar, S. Kumar, Exploring the structural, elastic, optical, dielectric and magnetic characteristics of Ca2+ incorporated superparamagnetic Zn0.5−xCa0.1Co0.4+xFe2O4 (x = 0.0, 0.05 & 0.1) nanoferrites. J. Alloys Compd. 886, 161190 (2021). https://doi.org/10.1016/j.jallcom.2021.161190

    Article  Google Scholar 

  38. T. Yener, İ Araz, A. Kırsoy, O. Yalçın, M. Okutan, P. Haring Bolivar, Electromagnetic properties in the structure of Cerium-Copper substituted barium hexaferrite. J. Mol. Struct. (2022). https://doi.org/10.1016/j.molstruc.2022.133752

    Article  Google Scholar 

  39. R.S. Sundari, S. Harish, V. Vijay, M. Shimomura, S. Ponnusamy, J. Archana, M. Navaneethan, Suppression of intrinsic thermal conductivity in Sr1−xGdxTiO3 ceramics via phonon-point defect scattering for enhanced thermoelectric application. RSC Adv. 13, 665–673 (2022). https://doi.org/10.1039/d2ra04829a

    Article  ADS  Google Scholar 

  40. G.A. Alna’washi, A.M. Alsmadi, I. Bsoul, B. Salameh, G.M. Alzoubi, M. Shatnawi, S.M. Hamasha, S.H. Mahmood, Investigation on X-ray photoelectron spectroscopy, structural and low temperature magnetic properties of Ni-Ti co-substituted M-type strontium hexaferrites prepared by ball milling technique. Results Phys. 28, 104574 (2021). https://doi.org/10.1016/j.rinp.2021.104574

    Article  Google Scholar 

  41. L.L. Rusevich, E.A. Kotomin, G. Zvejnieks, M.M. Kržmanc, S. Gupta, N. Daneu, J.C.S. Wu, Y.G. Lee, W.Y. Yu, Effects of Al doping on hydrogen production efficiency upon photostimulated water splitting on SrTiO3 nanoparticles. J. Phys. Chem. C 126, 21223–21233 (2022). https://doi.org/10.1021/acs.jpcc.2c05993

    Article  Google Scholar 

  42. T. Xie, C. Liu, L. Xu, J. Yang, W. Zhou, Novel heterojunction Bi2O3/SrFe12O19 magnetic photocatalyst with highly enhanced photocatalytic activity. J. Phys. Chem. C 117, 24601–24610 (2013). https://doi.org/10.1021/jp408627e

    Article  Google Scholar 

  43. V.K. Mittal, S. Bera, R. Nithya, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, Solid state synthesis of Mg-Ni ferrite and characterization by XRD and XPS. J. Nucl. Mater. 335, 302–310 (2004). https://doi.org/10.1016/j.jnucmat.2004.05.010

    Article  ADS  Google Scholar 

  44. Z. Jin, C. Liu, K. Qi, X. Cui, Photo-reduced Cu/CuO nanoclusters on TiO2 nanotube arrays as highly efficient and reusable catalyst. Sci. Rep. (2017). https://doi.org/10.1038/srep39695

    Article  Google Scholar 

  45. P.N. Anantharamaiah, H.M. Shashanka, S. Saha, K. Haritha, C.V. Ramana, Aluminum doping and nanostructuring enabled designing of magnetically recoverable hexaferrite catalysts. ACS Omega 7, 6549–6559 (2022). https://doi.org/10.1021/acsomega.1c05548

    Article  Google Scholar 

  46. H. Joshi, A.R. Kumar, Scrutiny and correlations of structural, magnetic, and dielectric properties of M-type strontium hexaferrite (SrFe12O19) for permanent magnet applications. J. Mater. Sci. Mater. Electron. 32, 4331–4346 (2021). https://doi.org/10.1007/s10854-020-05176-8

    Article  Google Scholar 

  47. S. Tiwari, G. Lal, H. Bhoi, K. Punia, S. Singh Meena, S. Kumar, Coexistence of superparamagnetism and superspin glass in non-stoichiometric Zn0.5Ca0.5Fe2O4 nanoferrite. J. Magn. Magn. Mater.Magn. Magn. Mater. 570, 170466 (2023). https://doi.org/10.1016/j.jmmm.2023.170466

    Article  Google Scholar 

  48. G. Lal, K. Punia, S.N. Dolia, P.A. Alvi, S. Dalela, S. Kumar, Rietveld refinement, Raman, optical, dielectric, Mössbauer and magnetic characterization of superparamagnetic fcc-CaFe2O4 nanoparticles. Ceram. Int. 45, 5837–5847 (2019). https://doi.org/10.1016/j.ceramint.2018.12.050

    Article  Google Scholar 

  49. M.N. Ashiq, R.B. Qureshi, M.A. Malana, M.F. Ehsan, Fabrication, structural, dielectric and magnetic properties of tantalum and potassium doped M-type strontium calcium hexaferrites. J. Alloys Compd. 651, 266–272 (2015). https://doi.org/10.1016/j.jallcom.2015.05.181

    Article  Google Scholar 

  50. C. Sudakar, G.N. Subbanna, T.R.N. Kutty, Wet chemical synthesis of multicomponent hexaferrites by gel-to-crystallite conversion and their magnetic properties. J. Magn. Magn. Mater. 263, 253–268 (2003). https://doi.org/10.1016/S0304-8853(02)01572-X

    Article  ADS  Google Scholar 

  51. J.M.D. Coey, Permanent magnet applications. J. Magn. Magn. Mater. 248, 441–456 (2002). https://doi.org/10.1016/S0304-8853(02)00335-9

    Article  ADS  Google Scholar 

  52. C. de Julián Fernández, C. Sangregorio, J. de la Figuera, B. Belec, D. Makovec, A. Quesada, Progress and prospects of hard hexaferrites for permanent magnet applications. J. Phys. D Appl. Phys. (2021). https://doi.org/10.1088/1361-6463/abd272

    Article  Google Scholar 

  53. M.A. Almessiere, Y. Slimani, S.G.J. Van Leusen, A.B.P. Kögerler, Effect of Nb3+ ion substitution on the magnetic properties of SrFe12O19 hexaferrites. J. Mater. Sci. Mater. Electron. 30, 11181–11192 (2019). https://doi.org/10.1007/s10854-019-01464-0

    Article  Google Scholar 

  54. M. Naeem, R. Beenish, M. Aslam, M. Fahad, Fabrication, structural, dielectric and magnetic properties of tantalum and potassium doped M-type strontium calcium hexaferrites. J. Alloys Compd. 651, 266–272 (2015). https://doi.org/10.1016/j.jallcom.2015.05.181

    Article  Google Scholar 

  55. S.V. Trukhanov, T.I. Zubar, V.A. Turchenko, A.V. Trukhanov, T. Kmječ, J. Kohout, L. Matzui, O. Yakovenko, D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Exploration of crystal structure, magnetic and dielectric properties of titanium-barium hexaferrites. Mater. Sci. Eng. B. Solid State Mater. Adv. Technol. (2021). https://doi.org/10.1016/j.mseb.2021.115345

    Article  Google Scholar 

  56. V.A. Turchenko, S.V. Trukhanov, V.G. evich Kostishin, F. Damay, F. Porcher, D.S. Klygach, M.G. evich Vakhitov, L.Y. evna Matzui, O.S. Yakovenko, B. Bozzo, I. Fina, M.A. Almessiere, Y. Slimani, A. Baykal, D. Zhou, A.V. Trukhanov, Impact of In3+ cations on structure and electromagnetic state of M−type hexaferrites. J. Energy Chem. 69, 667–676 (2022). https://doi.org/10.1016/j.jechem.2021.12.027

    Article  Google Scholar 

  57. M. Lakshmi, K.V. Kumar, K. Thyagarajan, Study of the dielectric behaviour of Cr-doped zinc nano ferrites synthesized by sol-gel method. Adv. Mater. Phys. Chem. 06, 141–148 (2016). https://doi.org/10.4236/ampc.2016.66015

    Article  Google Scholar 

  58. Z. Hu, G.B.G. Stenning, V. Koval, J. Wu, B. Yang, A. Leavesley, R. Wylde, M.J. Reece, C. Jia, H. Yan, Terahertz faraday rotation of SrFe12O19 hexaferrites enhanced by Nb doping. ACS Appl. Mater. Interfaces 14, 46738–46747 (2022). https://doi.org/10.1021/acsami.2c13088

    Article  Google Scholar 

  59. K.M. Batoo, R. Verma, A. Chauhan, R. Kumar, M. Hadi, O.M. Aldossary, Y. Al Douri, Improved room temperature dielectric properties of Gd3+ and Nb5+ co-doped Barium Titanate ceramics. J. Alloys Compd. 883, 160836 (2021). https://doi.org/10.1016/j.jallcom.2021.160836

    Article  Google Scholar 

  60. F. Bibi, S. Iqbal, H. Sabeeh, T. Saleem, B. Ahmad, M. Nadeem, I. Shakir, M. Aadil, A. Kalsoom, Evaluation of structural, dielectric, magnetic and photocatalytic properties of Nd and Cu co-doped barium hexaferrite. Ceram. Int. 47, 30911–30921 (2021). https://doi.org/10.1016/j.ceramint.2021.07.274

    Article  Google Scholar 

  61. B. Ahmad, S. Mumtaz, M.F. Ehsan, M. Najam-ul-Haq, A. Shah, M.N. Ashiq, Magnetic and dielectric properties of Nd–Mn substituted Co2Y-hexaferrites. J. Magn. Magn. Mater. 460, 171–176 (2018). https://doi.org/10.1016/j.jmmm.2018.04.002

    Article  ADS  Google Scholar 

  62. M.M. Costa, G.F.M. Pires Júnior, A.S.B. Sombra, Dielectric and impedance properties’ studies of the of lead doped (PbO)-Co2Y type hexaferrite (Ba2Co2Fe12O22 (Co2Y)). Mater. Chem. Phys. 123, 35–39 (2010). https://doi.org/10.1016/j.matchemphys.2010.03.026

    Article  Google Scholar 

  63. T.A. Alrebdi, I. Khalil Yahaya, J. Mohammed, Y.S. Wudil, A. Paray, T. Tchouank Tekoucarol, H.Y. Hafeez, A.K. Srivastava, Phase structure refinement, electric modulus spectroscopy, urbach energy analysis, and magnetic properties of Ce3+–Ni2+-substituted Y-type barium hexaferrites. Mater. Sci. Eng. B. Solid State Mater. Adv. Technol. 280, 115682 (2022). https://doi.org/10.1016/j.mseb.2022.115682

    Article  Google Scholar 

  64. H. Shakeel, H.M. Khan, I. Ali, K. Ali, M.A. Iqbal, I. Sadiq, G. Murtaza, M.U. Islam, M.N. Ashiq, M. Nadeem, Structural, magnetic and electrical study of rare earth doped Y-type hexaferrites. J. Mater. Sci. Mater. Electron. 30, 6708–6717 (2019). https://doi.org/10.1007/s10854-019-00982-1

    Article  Google Scholar 

  65. K. Lily, K. Kumari, R.N.P. Prasad, Choudhary, impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic. J. Alloys Compd. 453, 325–331 (2008). https://doi.org/10.1016/j.jallcom.2006.11.081

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge VIT management for the facilities provided for this work. The authors also would like to convey their gratefulness to all the lab members.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, methodology, formal analysis and investigation, writing—original draft preparation: HJ; writing—review and editing, supervision: ARK.

Corresponding author

Correspondence to A. Ruban Kumar.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interest to disclose. The authors have no conflicts of interest to declare that are relevant to the content of this article. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. The authors have no financial or proprietary interests in any material discussed in this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, H., Ruban Kumar, A. Magnesium- and copper-substituted strontium–aluminium–hexaferrite (SrAl2Fe10O19): synthesis and scrutiny. Appl. Phys. A 130, 24 (2024). https://doi.org/10.1007/s00339-023-07170-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07170-3

Keywords

Navigation