Skip to main content
Log in

Structural, electrical, and impedance properties of Co and Sn doped Ba0.5Sr0.5Fe12-2xO19 hexaferrite ceramics (0 ≤ x ≤ 1) and their evaluation for antenna application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effect of doping of Co2+ and Sn4+ in Ba0.5Sr0.5Fe12-2xO19 hexaferrite with different concentrations (x = 0.2, 0.4, 0.6, 0.8, and 1.0) was studied by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), complex impedance spectroscopy, and analyzed as a dielectric resonating antenna (DRA) at room temperature. The samples were produced and sintered by the solid-state reaction method. Their structure appeared from the M-phase type while their increase in grain size evidenced a dependency on Co-Sn content. The dielectric constant and loss tangent, inferred from impedance spectroscopy, also decreased with the corresponding increase in doping. The real and imaginary impedance decreased with the frequency increment. An electrical equivalent circuit using the Resistance-Constant Phase Element (R-CPE) association was thus proposed, the best-simulated components fitting with the observed structural and microstructure properties. It enabled a better understanding of the microstructure through simulated values of grain/grain boundaries and its effect on tuning the electrical properties in the low-frequency regime. The ferrite characteristics were tested for dielectric resonator antenna applications owing to their good inherent behavior than microstrip patch antenna. Measurement of the radiation efficiency, gain and bandwidth parameters of all the produced ceramics showed that the non-doped one (x = 0.0) exhibits the optimum values: 99.91%, 4.24, and 2.89 GHz, respectively, making the most valuable for antenna applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

The data will be available after request.

References

  1. B. Wu, S. Qi, X. Wu, H. Wang, Q. Zhuang, H. Yi, Xu. Pu, Z. Xiong, G. Shi, S. Chen, B. Wang, FeBO3 as a low cost and high-performance anode material for sodium-ion batteries. Chin. Chem. Lett. 32, 3113–3117 (2021)

    Google Scholar 

  2. G. Zhang, X. Liu, P. Yu, D. Shen, B. Liu, Q. Pan, L. Wang, H. Fu, Fe3C coupled with Fe-Nx supported on N-doped carbon as oxygen reduction catalyst for assembling Zn-air battery to drive water splitting. Chin. Chem. Lett. 33, 3903–3908 (2022)

    Google Scholar 

  3. X. Fan, G. Wei, X. Lin, X. Wang, Z. Si, X. Zhang, Q. Shao, S. Mangin, E. Fullerton, L. Jiang, W. Zhao, Reversible switching of interlayer exchange coupling through atomically thin VO2 via electronic state modulation. Matter 2, 1582–1593 (2020)

    Google Scholar 

  4. J. Chen, Z. Zhang, H. Lu, Structure design and properties investigation of Bi2O2Se/graphene van der Waals heterojunction from first-principles study. Surf. Interfaces 33, 102289 (2022)

    Google Scholar 

  5. B. Li, H. Pang, H. Xue, Fe-based phosphate nanostructures for supercapacitors. Chin. Chem. Lett. 32, 885–889 (2021)

    Google Scholar 

  6. M. Fu, W. Chen, Y. Lei, H. Yu, Y. Lin, M. Terrones, Biomimetic construction of ferrite quantum dot/graphene heterostructure for enhancing ion/charge transfer in supercapacitors. Adv. Mater. 35, 2300940 (2023)

    Google Scholar 

  7. D.G.R. William, D. Callister Jr., 8.6 fracture toughness testing. Mater. Sci. Eng. Introd. 1, 250–255 (2010)

    Google Scholar 

  8. F.M.M. Pereira, A.S.B. Sombra, A review on BaxSr1-XFe12O19 hexagonal ferrites for use in electronic devices. Solid State Phenom. 202, 1–64 (2013)

    Google Scholar 

  9. H. Kaur, A. Marwaha, C. Singh, S.B. Narang, R.B. Jotania, Y. Bai, S.R. Mishra, D. Singh, A.S.B. Sombra, M. Ghimire, P. Dhruv, Tailoring of electromagnetic absorption in substituted hexaferrites from 8.2 GHz to 12.4 GHz. J. Electron. Mater. 49, 1646–1653 (2020)

    ADS  Google Scholar 

  10. C. Pascoal, V.C. Pandolfelli, Bauxitas refratárias: composição química, fases e propriedades. Cerâmica 46, 131–138 (2000)

    Google Scholar 

  11. V.K. Pecharsky, P.Y. Zavalij, Fundamentals of powder diffraction and structural characterization of materials, Fundam. Powder Diffr. Struct. Charact. Mater. 1–741 (2005)

  12. T.R. Wagner, Preparation and crystal structure analysis of magneto plumbite type BaGa12O19. J. Solid State Chem. 136, 120–124 (1998)

    ADS  Google Scholar 

  13. J. Singh, C. Singh, Y. Bai, D. Kaur, S.B. Narang, K.C. James Raju, P.N. Dhruv, R. Jotania, A. Joseph, R. Joshi, Role of phase, grain morphology and impedance properties in tailoring of Barium Strontium hexaferrites for microwave absorber/attenuator applications. Mater. Sci. Eng. B 281, 115679 (2022)

    Google Scholar 

  14. J.R. Macdonald, W.B. Johnson, R. Macdonald, Impedance spectroscopy theory, experiment, and applications. Choice Rev. Online 43, 430327–430327 (2005)

    Google Scholar 

  15. J. Wang, X. Chong, L. Lv, Y. Wang, X. Ji, H. Yun, J. Feng, High-entropy ferroelastic (10RE0.1) TaO4 ceramics with oxygen vacancies and improved thermophysical properties. J. Mater. Sci. Technol. 157, 98–106 (2023)

    Google Scholar 

  16. K.W. Wagner, Ann. Phys. Annalen der physik. 40, 817–855 (1913)

    ADS  Google Scholar 

  17. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, influence of Al doping on electrical properties of Ni–Cd nano ferrites. Curr. Appl. Phys. 9, 826–832 (2009)

    ADS  Google Scholar 

  18. S.M. Ramay, S.A. Siddiqi, S. Atiq, M.S. Awan, S. Riaz, Structural, magnetic and electrical properties of Al3+ substituted. Chin. J. Chem. Phys. 23, 591–595 (2010)

    Google Scholar 

  19. M. Vashista, V. Moorthy, Influence of applied magnetic field strength and frequency response of pick-up coil on the magnetic barkhausen noise profile. J. Magn. Magn. Mater. 345, 208–214 (2013)

    ADS  Google Scholar 

  20. M. Hashim, S. Kumar, S. Ali, B.H. Koo, H. Chung, R. Kumar, Structural, magneticand electrical properties of Al 3 + substituted Ni–Zn ferrite nanoparticles. J. Alloys Compd. 511, 107–114 (2012)

    Google Scholar 

  21. M.M. Haque, M. Huq, M.A. Hakim, Densification, magnetic and dielectric behavior of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)

    Google Scholar 

  22. M. Chanda, Science of Engineering Materials, vol. 3 (The Machmillan Company of India Ltd., New Delhi, 1980)

    Google Scholar 

  23. R.G.M. Oliveira, M.C. Romeu, M.M. Costa, P.M.O. Silva, J.M.S. Filho, C.C.M. Junqueira, A.S.B. Sombra, Impedance spectroscopy study of Na2Nb4O11 ceramic matrix by the addition of Bi2O3. J. Alloys Compd. 584, 295–302 (2014)

    Google Scholar 

  24. E.J.W. Verwey, P.W. Haayman, Phys. 8, 979–987 (1941)

    ADS  Google Scholar 

  25. B. Ünal, M.A. Almessiere, A.D. Korkmaz, Y. Slimani, A. Baykal, Effect of thulium substitution on conductivity and dielectric belongings of nanospinel cobalt ferrite. J. Rare Earths. 38, 1103–1113 (2020)

    Google Scholar 

  26. C.D. Patel, P.N. Dhruv, S.S. Meena, C. Singh, S. Kavita, M. Ellouze, R.B. Jotania, Influence of Co4+ -Ca2+ substitution on structural, microstructure, magnetic, electrical and impedance characteristics of M-type barium–strontium hexagonal ferrites. Cer. Int. 46, 24816–24830 (2020)

    Google Scholar 

  27. Y. Marouani, J. Massoudi, M. Noumib, A. Benaliabc, E. Dhahri, P. Sanguinod, M.P.F. Graça, M.A. Valentec, B.F.O. Costaa, Electrical conductivity and dielectric properties of Sr doped M-type barium hexaferrite BaFe12O19. RSC Adv. 11, 1531–1542 (2021)

    ADS  Google Scholar 

  28. W. Zhang et al., Structural, optical, dielectric, and magnetic properties of Sr0.7La0.3Zn0.3Fe11.7–XAlxO19 hexaferrite synthesized by the solid-state reaction method. J. Solid State Chem. 306, 122766 (2022)

    Google Scholar 

  29. M. Zahid, H.M. Khan, I. Sadiq et al., Structural elucidation with improved dielectric and magnetic properties of sol-gel synthesized Cr3+ substituted M-type Sr2+ hexaferrites. J. Mater. Eng. Perform 31, 1530–1539 (2022)

    Google Scholar 

  30. M. Amini, A. Gholizadeh, Shape control and associated magnetic and dielectric properties of MFe12O19 (M = Ba, Pb, Sr) hexaferrites. J. Phys. Chem. Solids 147, 109660 (2020)

    Google Scholar 

  31. J. Mahapatro, S. Agrawal, Effect of Eu3+ ions on electrical and dielectric properties of barium hexaferrites prepared by solution combustion method. Ceram. Int. 47, 20529–20543 (2021)

    Google Scholar 

  32. J.M.S. Filho, C.A. Rodrigues Junior, D.G. Sousa, R.G.M. Oliveira, M.M. Costa, G.C. Barroso, A.S.B. Sombra, Impedance spectroscopy analysis of Mg4Nb2O9 ceramics with different additions of V2O5 for microwave and radio frequency applications. J. Electron. Mater. 46, 4344–4352 (2017)

    ADS  Google Scholar 

  33. J. Bashir, R. Shaheen, Structural and complex AC impedance spectroscopic studies of A2CoNbO6 (A = Sr, Ba) ordered double perovskites. Solid State Sci. 13, 993–999 (2011)

    ADS  Google Scholar 

  34. A. S. Bondarenko, G. Ragoisha, EIS Spectrum Analyzer, http://www.abc.chemistry.bsu.by

  35. M.V. Nikolic, D.L. Sekulic, N. Nikolic, M.P. Slankamenac, O.S. Aleksic, H. Danninger, E. Halwax, V.B. Pavlovic, P.M. Nikolic, Sci. Sinter. 45, 281–292 (2013)

    Google Scholar 

  36. X.-Z. Yuan, C. Song, H. Wang, J. Zhang, Electrochemical Impedance Spectroscopy in PEM Fuel Cells (Springer London, London, 2010)

    Google Scholar 

  37. T. Xia, Q. Li, J. Meng, X. Cao, Structural characterization, stability and electrical properties of strontium niobate ceramic. Mater. Chem. Phys. 111, 335–340 (2008)

    Google Scholar 

  38. K.W. Leung, K.Y.A. Lai, K.M. Luk, D. Lin, Theory and experiment of a coaxial probe fed hemispherical dielectric resonator antenna. IEEE Trans. Antennas Propag. 41, 1390–1398 (1993)

    ADS  Google Scholar 

  39. C.A. Balanis, Antenna Theory: Analysis and Design, 3rd edn. (Wiley, 2012)

    Google Scholar 

  40. R.G.M. Oliveira, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, J.C. Goes, A.S.B. Sombra, Dielectric characterization of BiVO4-TiO2 composites and applications in microwave range. J. Alloys Compd. 775, 889–895 (2019)

    Google Scholar 

  41. R.G.M. Oliveira, R.A. Silva, J.E.V. de Morais, G.S. Batista, M.A.S. Silva, J.C. Goes, H.D. de Andrade, I.S. Queiroz Júnior, C. Singh, A.S.B. Sombra, Effects of CaTiO3 addition on the microwave dielectric properties and antenna properties of BiVO4 ceramics. Compos. Part B Eng. 175, 107122 (2019)

    Google Scholar 

  42. D.R.S. Gangaswamy, S. Bharadwaj, M. Chaitanya Varma, G. Choudary, K.H. Rao, Unusual increase in permeability in cobalt substituted Ni-Zn-Mg ferrites. J. Magn. Magn. Mater. 468, 73–78 (2018)

    ADS  Google Scholar 

  43. J.E. de Morais, A.J.N. de Castro, R.G.M. Oliveira, F.F. do Carmo, A.J.M. Sales, J.C. Sales, M.A.S. Silva, D.X. Gouveia, M.M. Costa, A.R. Rodrigues, A.S.B. Sombra, Magneto tuning of a ferrite dielectric resonator antenna based on LiFe5O8 matrix. J. Electron. Mater. 47, 3829–3835 (2018)

    ADS  Google Scholar 

  44. V. Adersh, A. Rajan, S. Ganesanpotti, MgFe1.98O4 – BaFe12O19 magneto-dielectric composites based ferrite resonator antenna for super-high frequency applications. Cer. Int. 48, 24531–24539 (2022)

    Google Scholar 

  45. P.B.A. Fechine, H.H.B. Rocha, R.S.T. Moretzsohn, J.C. Denardin, R. Lavín, A.S.B. Sombra, Study of a microwave ferrite resonator antenna, based on a ferrimagnetic composite (Gd3Fe5O12)GdIGX–(Y3Fe5O12)YIG1−X. IET Microw. Antennas Propag. 3, 1191–1198 (2009)

    Google Scholar 

  46. Y. Ding, C.C. Hu, W.Q. Sheng, K.X. Song, B. Liu, Crystal structure, microwave dielectric properties, and dielectric resonant antenna studies of novel low-permittivity CoAl2O4 spinel ceramics. J. Mater. Sci.: Mater. Electron. 32, 22813–22821 (2021)

    Google Scholar 

  47. V.P. Silva Neto, C.F.L. Vasconcelos, M.R.D. Bomio, M.R.M.L. Albuquerque, J.H. Araújo, A.G. D’Assunção, IET Microw. Antennas Propag. 9, 1618–1622 (2015)

    Google Scholar 

  48. I.B. Tavares da Silva, A.G. D’Assunçao, J.B. Lucena de Oliveira, S.M. de Holanda, C.H.N. Cordeiro, Design and analysis of nickel ferrite resonator antenna for C band applications. Microw. Opt. Technol. Lett. 63, 1781–1785 (2021)

    Google Scholar 

Download references

Funding

The authors are grateful to CNPq (402045/2013-0), the US Air Force Office of Scientific Research (AFOSR) (FA9550-16-1-0127), and CNPq (Process: 402561/2007-4, Edital MCT/CNPq no. 10/2007) for providing financial support.

Author information

Authors and Affiliations

Authors

Contributions

CS: conceptualization, methodology, investigation, writing original draft. JS: preparation of samples, data curation. JEVM: writing original draft, software simulation, low-frequency measurement. RGMO, FFDC, MASS: antenna measurement. ASBS: methodology, investigation, writing original draft. SA-M: structure characterization, reviewing and editing. RJ: reviewing and editing, data curation. DZ: validation, data curation reviewing and editing. ST, LP, AT: reviewing and editing.

Corresponding authors

Correspondence to Charanjeet Singh, Jasbir Singh, J. E. V. de Morais or A. S. B. Sombra.

Ethics declarations

Conflict of interest

Authors declare that they do not have any competing interests that are directly or indirectly related to the work submitted for publication.

Ethical approval

This study was not performed on Animals/Humans.

Consent to participate

Not applicable.

Consent for publication

All authors have given consent for submitting a paper to this journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, C., Singh, J., de Morais, J.E.V. et al. Structural, electrical, and impedance properties of Co and Sn doped Ba0.5Sr0.5Fe12-2xO19 hexaferrite ceramics (0 ≤ x ≤ 1) and their evaluation for antenna application. Appl. Phys. A 129, 550 (2023). https://doi.org/10.1007/s00339-023-06819-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06819-3

Keywords

Navigation