Skip to main content
Log in

Free vibration analysis of rotating piezoelectric/flexoelectric microbeams

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In recent years, flexoelectric and piezoelectric effects have been investigated in many studies, but these effects have not been studied simultaneously in a rotating microbeam, taking into account the size effects. The simultaneous investigation of these effects is necessary to better understand the vibrational behavior of flexoelectric microstructures. It will be possible to identify the flexoelectric and size-dependent effects and their influence on the vibration frequency as a result of this analysis. Furthermore, it can lead to improved design of microstructures. Under the influence of the flexoelectric effect, the current research analyzes the free vibrations of a rotating piezoelectric microbeam. Also, all rotating microbeams are affected by the flexoelectric effect, and therefore the study of this phenomenon is of great importance. Due to the small strain and moderate rotation of the beam, Euler–Bernoulli beam theory and von Karman strain–displacement relations are employed in this article. The Gibbs energy function presented in this research includes the effects of couple stress, piezoelectric and flexoelectric. Hamilton's principle is used to obtain the equations of motion and boundary conditions of the rotating microbeam. In the final step, it has been examined in this study how parameters such as slenderness ratios, changes in rotation speed, and coefficients related to flexoelectric and piezoelectric properties affect the vibration of a rotating microbeam. The results show that the natural frequency increases as the rotation speed increases. Further, the use of piezoelectric and flexoelectric effects has increased the structure's stiffness and, as a result, increased its natural frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. B. Akgöz, Ö. Civalek, Buckling analysis of functionally graded tapered microbeams via Rayleigh-Ritz method. Mathematics 10(23), 4429 (2022). https://doi.org/10.3390/math10234429

    Article  Google Scholar 

  2. Y.S. Al Rjoub, A.G. Hamad, Free vibration of functionally Euler-Bernoulli and Timoshenko graded porous beams using the transfer matrix method. KSCE. J. Civ. Eng. 21, 792–806 (2017). https://doi.org/10.1007/s12205-016-0149-6

    Article  Google Scholar 

  3. M. Arefi, M. Pourjamshidian, A. Ghorbanpour Arani, T. Rabczuk, Influence of flexoelectric, small-scale, surface and residual stress on the nonlinear vibration of sigmoid, exponential and power-law FG Timoshenko nano-beams. J. Low. Freq. Noise. Vib. Active. Contr. 38(1), 122–142 (2019). https://doi.org/10.1177/1461348418815410

    Article  Google Scholar 

  4. H. Arvin, Free vibration analysis of micro rotating beams based on the strain gradient theory using the differential transform method: Timoshenko versus Euler-Bernoulli beam models. Eur. J. Mech. Solid. 65, 336–348 (2017). https://doi.org/10.1016/j.euromechsol.2017.05.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. H. Arvin, The flapwise bending free vibration analysis of micro-rotating Timoshenko beams using the differential transform method. J. Vib. Contr. 24(20), 4868–4884 (2018). https://doi.org/10.1177/1077546317736706

    Article  MathSciNet  Google Scholar 

  6. H. Arvin, S.M.H. Hosseini, Y. Kiani, Free vibration analysis of pre/post buckled rotating functionally graded beams subjected to uniform temperature rise. Thin-Walled Struct. 158, 107187 (2021). https://doi.org/10.1016/j.tws.2020.107187

    Article  Google Scholar 

  7. A. Ashrafi Dehkordi, R. Jahanbazi Goojani, Y. Tadi Beni, Porous flexoelectric cylindrical nanoshell based on the non-classical continuum theory. Appl. Phys. Mater. Sci. Process. 128(6), 478 (2022). https://doi.org/10.1007/s00339-022-05584-z

    Article  ADS  Google Scholar 

  8. A.F. Babadi, Y. Tadi Beni, K.K. Żur, On the flexoelectric effect on size-dependent static and free vibration responses of functionally graded piezo-flexoelectric cylindrical shells. Thin-Walled Struct. 179, 109699 (2022). https://doi.org/10.1016/j.tws.2022.109699

    Article  Google Scholar 

  9. R. Bagheri, Y. Tadi Beni, On the size-dependent nonlinear dynamics of viscoelastic/flexoelectric nanobeams. J. Vib. Contr. 27(17–18), 2018–2033 (2021). https://doi.org/10.1177/1077546320952225

    Article  MathSciNet  Google Scholar 

  10. S. Bhattacharya, D. Das, Free vibration analysis of bidirectional-functionally graded and double-tapered rotating micro-beam in thermal environment using modified couple stress theory. Compos. Struct. 215, 471–492 (2019). https://doi.org/10.1016/j.compstruct.2019.01.080

    Article  Google Scholar 

  11. D. Chen, S. Zheng, Y. Wang, L. Yang, Z. Li, Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur. J. Mech. Solid. 84, 104083 (2020). https://doi.org/10.1016/j.euromechsol.2020.104083

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Ö. Civalek, B. Uzun, M.Ö. Yaylı, An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. 41(2), 67 (2022). https://doi.org/10.1007/s40314-022-01761-1

    Article  MathSciNet  MATH  Google Scholar 

  13. S.A. Faghidian, Analytical inverse solution of eigenstrains and residual fields in autofrettaged thick-walled tubes. J. Press. Vessel Technol. (2017). https://doi.org/10.1115/1.4034675

    Article  Google Scholar 

  14. S.A. Faghidian, Analytical approach for inverse reconstruction of eigenstrains and residual stresses in autofrettaged spherical pressure vessels. J. Press. Vessel Technol. (2017). https://doi.org/10.1115/1.4035980

    Article  Google Scholar 

  15. S.A. Faghidian, I. Elishakoff, Wave propagation in Timoshenko-Ehrenfest nanobeam: a mixture unified gradient theory. J. Vib. Acoust. 144(6), 061005 (2022). https://doi.org/10.1115/1.4055805

    Article  Google Scholar 

  16. S.A. Faghidian, K.K. Żur, E. Pan, J. Kim, On the analytical and meshless numerical approaches to mixture stress gradient functionally graded nano-bar in tension. Eng. Anal. Bound. Elem. 134, 571–580 (2022). https://doi.org/10.1016/j.enganabound.2021.11.010

    Article  MathSciNet  MATH  Google Scholar 

  17. S.A. Faghidian, K.K. Żur, J.N. Reddy, A.J.M. Ferreira, On the wave dispersion in functionally graded porous Timoshenko-Ehrenfest nanobeams based on the higher-order nonlocal gradient elasticity. Compos. Struct. 279, 114819 (2022). https://doi.org/10.1016/j.compstruct.2021.114819

    Article  Google Scholar 

  18. S.A. Faghidian, I. Elishakoff, The tale of shear coefficients in Timoshenko-Ehrenfest beam theory: 130 years of progress. Meccanica 58, 97–108 (2023). https://doi.org/10.1007/s11012-022-01618-1

    Article  MathSciNet  Google Scholar 

  19. S.A. Faghidian, K.K. Żur, I. Elishakoff, Nonlinear flexure mechanics of mixture unified gradient nanobeams. Comm. Nonlinear. Sci. Numer. Simulat. 117, 106928 (2023). https://doi.org/10.1016/j.cnsns.2022.106928

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Faghidian, K.K. Żur, E. Pan, Stationary variational principle of mixture unified gradient elasticity. Int. J. Eng. Sci. 182, 103786 (2023). https://doi.org/10.1016/j.ijengsci.2022.103786

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Fang, S. Zheng, J. Xiao, X. Zhang, Vibration and thermal buckling analysis of rotating nonlocal functionally graded nanobeams in thermal environment. Aero. Sci. Tech. 106, 106146 (2020). https://doi.org/10.1016/j.ast.2020.106146

    Article  Google Scholar 

  22. S. Fattaheian Dehkordi, Y. Tadi Beni, Size-dependent continuum-based model of a truncated flexoelectric/flexomagnetic functionally graded conical nano/microshells. Appl. Phys. Mater. Sci. Process. 128(4), 320 (2022). https://doi.org/10.1007/s00339-022-05386-3

    Article  ADS  Google Scholar 

  23. A. Ghobadi, Y. TadiBeni, H. Golestanian, Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field. Arch. Appl. Mech. 90, 2025–2070 (2020). https://doi.org/10.1007/s00419-020-01708-0

    Article  ADS  Google Scholar 

  24. A. Ghobadi, Y. Tadi Beni, K.K. Żur, Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon. Compos. Struct. 259, 113220 (2021). https://doi.org/10.1016/j.compstruct.2020.113220

    Article  Google Scholar 

  25. A. Ghobadi, H. Golestanian, Y. Tadi Beni, K.K. Żur, On the size-dependent nonlinear thermo-electro-mechanical free vibration analysis of functionally graded flexoelectric nano-plate. Comm. Nonlinear. Sci. Numer. Simul. 95, 105585 (2021). https://doi.org/10.1016/j.cnsns.2020.105585

    Article  MathSciNet  MATH  Google Scholar 

  26. H. Guo, X. Zhuang, T. Rabczuk, A deep collocation method for the bending analysis of Kirchhoff plate. Comput. Mater. Contin. 59(2), 433–456 (2019). https://doi.org/10.32604/cmc.2019.06660

    Article  Google Scholar 

  27. M. Heidari, H. Arvin, Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes. J. Vib. Contr. 25(14), 2063–2078 (2019). https://doi.org/10.1177/107754631984783

    Article  MathSciNet  Google Scholar 

  28. S.M.H. Hosseini, H. Arvin, Free vibration analysis of pre/post-buckled rotating functionally graded sandwich micro-beams. Microsyst. Technol. 27(5), 2049–2061 (2021). https://doi.org/10.1007/s00542-020-04986-4

    Article  Google Scholar 

  29. S.M.H. Hosseini, H. Arvin, Y. Kiani, On buckling and post-buckling of rotating clamped-clamped functionally graded beams in thermal environment. Mech. Base. Des. Struct. Mach. 50(8), 2779–2794 (2022). https://doi.org/10.1080/15397734.2020.1784205

    Article  Google Scholar 

  30. M.H. Jalaei, H.T. Thai, Ӧ Civalek, On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 172, 103629 (2022). https://doi.org/10.1016/j.ijengsci.2022.103629

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Kim, K.K. Żur, J.N. Reddy, Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019). https://doi.org/10.1016/j.compstruct.2018.11.023

    Article  Google Scholar 

  32. X. Li, Y. Luo, Flexoelectric effect on vibration of piezoelectric microbeams based on a modified couple stress theory. Shock. Vib. (2017). https://doi.org/10.1155/2017/4157085

    Article  Google Scholar 

  33. B.C. Lin, T.F. Xie, M. Xu, Y.H. Li, J. Yang, Natural frequencies and dynamic responses of rotating composite non-uniform beams with an elastically root in hygrothermal environment. Compos. Struct. 209, 968–980 (2019). https://doi.org/10.1016/j.compstruct.2018.11.029

    Article  Google Scholar 

  34. M. Mohtashami, Y. Tadi Beni, Size-dependent buckling and vibrations of piezoelectric nanobeam with finite element method. Iran. J. Sci. Tech. 43(3), 563–576 (2019). https://doi.org/10.1007/s40996-018-00229-9

    Article  Google Scholar 

  35. H.M. Numanoğlu, H. Ersoy, B. Akgöz, Ö. Civalek, A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Meth. Appl. Sci. 45(5), 2592–2614 (2022). https://doi.org/10.1002/mma.7942

    Article  MathSciNet  Google Scholar 

  36. R. Omidian, Y. Tadi Beni, F. Mehralian, Analysis of size-dependent smart flexoelectric nanobeams. Eur. Phys. J. Plus. 132(11), 1–19 (2017). https://doi.org/10.1140/epjp/i2017-11749-4

    Article  Google Scholar 

  37. E. Samaniego, C. Anitescu, S. Goswami, V.M. Nguyen-Thanh, H. Guo, K. Hamdia, X. Zhuang, T. Rabczuk, An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications. Comput. Meth. Appl. Mech. Eng. 362, 112790 (2020). https://doi.org/10.1016/j.cma.2019.112790

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. N. Shafiei, A. Mousavi, M. Ghadiri, Vibration behavior of a rotating non-uniform FG microbeam based on the modified couple stress theory and GDQEM. Compos. Struct. 149, 157–169 (2016). https://doi.org/10.1016/j.compstruct.2016.04.024

    Article  Google Scholar 

  39. Y. Tadi Beni, Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling. Mech. Res. Comm. 75, 67–80 (2016). https://doi.org/10.1016/j.mechrescom.2016.05.011

    Article  Google Scholar 

  40. Y. TadiBeni, Size-dependent torsional wave propagation in FG flexoelectric micro/nanotubes. Waves. Random. Media (2022). https://doi.org/10.1080/17455030.2022.2094027

    Article  Google Scholar 

  41. Y. Tadi Beni, Size dependent torsional electro-mechanical analysis of flexoelectric micro/nanotubes. Eur. J. Mech. Solid. 95, 104648 (2022). https://doi.org/10.1016/j.euromechsol.2022.104648

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Y. Tadi Beni, Size dependent coupled electromechanical torsional analysis of porous FG flexoelectric micro/nanotubes. Mech. Syst. Signal. Process. 178, 109281 (2022). https://doi.org/10.1016/j.ymssp.2022.109281

    Article  MATH  Google Scholar 

  43. T.Q. Thai, X. Zhuang, T. Rabczuk, An electro-mechanical dynamic model for flexoelectric energy harvesters. Nonlinear. Dynam. (2022). https://doi.org/10.1007/s11071-022-07928-z

    Article  Google Scholar 

  44. T.Q. Thai, X. Zhuang, T. Rabczuk, Curved flexoelectric and piezoelectric micro-beams for nonlinear vibration analysis of energy harvesting. Int. J. Solid. Struct. 264, 112096 (2023). https://doi.org/10.1016/j.ijsolstr.2022.112096

    Article  Google Scholar 

  45. Y.M. Yue, K.Y. Xu, T. Chen, A micro scale Timoshenko beam model for piezoelectricity with flexoelectricity and surface effects. Compos. Struct. 136, 278–286 (2016). https://doi.org/10.1016/j.compstruct.2015.09.046

    Article  Google Scholar 

  46. M. Zarepour, S.A.H. Hosseini, A.H. Akbarzadeh, Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Appl. Math. Model. 69, 563–582 (2019). https://doi.org/10.1016/j.apm.2019.01.001

    Article  MathSciNet  MATH  Google Scholar 

  47. X. Zhao, S. Zheng, Z. Li, Effects of porosity and flexoelectricity on static bending and free vibration of AFG piezoelectric nanobeams. Thin-Walled Struct. 151, 106754 (2020). https://doi.org/10.1016/j.tws.2020.106754

    Article  Google Scholar 

  48. X. Zhuang, S.S. Nanthakumar, T. Rabczuk, A meshfree formulation for large deformation analysis of flexoelectric structures accounting for the surface effects. Eng. Anal. Bound. Elem. 120, 153–165 (2020). https://doi.org/10.1016/j.enganabound.2020.07.021

    Article  MathSciNet  MATH  Google Scholar 

  49. X. Zhuang, H. Guo, N. Alajlan, H. Zhu, T. Rabczuk, Deep autoencoder based energy method for the bending, vibration, and buckling analysis of Kirchhoff plates with transfer learning. Eur. J. Mech. Solid. 87, 104225 (2021). https://doi.org/10.1016/j.euromechsol.2021.104225

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. X. Zhuang, T.Q. Thai, T. Rabczuk, Topology optimization of nonlinear flexoelectric structures. J. Mech. Phys. Solid. 171, 105117 (2023). https://doi.org/10.1016/j.jmps.2022.105117

    Article  MathSciNet  Google Scholar 

  51. K.K. Żur, M. Arefi, J. Kim, J.N. Reddy, Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory. Compos. B. Eng. 182, 107601 (2020). https://doi.org/10.1016/j.compositesb.2019.107601

    Article  Google Scholar 

  52. K.K. Żur, S.A. Faghidian, Analytical and meshless numerical approaches to unified gradient elasticity theory. Eng. Anal. Bound. Elem. 130, 238–248 (2021). https://doi.org/10.1016/j.enganabound.2021.05.022

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Ethics declarations

Conflict of interest

The author declares that there is no any conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$\left[{C}_{11}A\frac{\partial {u}_{0}}{\partial x}+\frac{{C}_{11}A}{2}{\left(\frac{\partial W}{\partial x}\right)}^{2}+\frac{{e}_{31}{\mu }_{31}A}{2{k}_{33}}\frac{{\partial }^{2}W}{\partial {x}^{2}}\right]\delta {u}_{0}\left|\begin{array}{c}x=L\\ x=0\end{array}\right.=0,$$
(31)
$$\left[{-C}_{11}I\frac{{\partial }^{3}W}{\partial {x}^{3}}-\frac{{e}_{31}^{2}I}{{k}_{33}}\frac{{\partial }^{3}W}{\partial {x}^{3}}-\mu A{l}^{2}\frac{{\partial }^{3}W}{\partial {x}^{3}}-\frac{{\mu }_{31}^{2}A}{2{k}_{33}}\frac{{\partial }^{3}W}{\partial {x}^{3}}+{C}_{11}A\frac{\partial {u}_{0}}{\partial x}\frac{\partial W}{\partial x}+\frac{A}{2}{\left(\frac{\partial W}{\partial x}\right)}^{3}+{e}_{31}Vb\frac{\partial W}{\partial x}-J{\Omega }^{2}\frac{\partial W}{\partial x}+J\frac{{\partial }^{3}W}{\partial x\partial {t}^{2}}\right]\delta W\left|\begin{array}{c}x=L\\ x=0\end{array}\right.=0,$$
(32)
$$\left[{C}_{11}I\frac{{\partial }^{2}W}{\partial {x}^{2}}+\frac{{e}_{31}^{2}I}{{k}_{33}}\frac{{\partial }^{2}W}{\partial {x}^{2}}+\mu A{l}^{2}\frac{{\partial }^{2}W}{\partial {x}^{2}}+\frac{{\mu }_{31}^{2}A}{2{k}_{33}}\frac{{\partial }^{2}W}{\partial {x}^{2}}\right]\frac{\partial W}{\partial x}\left|\begin{array}{c}x=L\\ x=0\end{array}\right.=0.$$
(33)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S.M.H., Beni, Y.T. Free vibration analysis of rotating piezoelectric/flexoelectric microbeams. Appl. Phys. A 129, 330 (2023). https://doi.org/10.1007/s00339-023-06615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06615-z

Keywords

Navigation