Skip to main content
Log in

Enhancement of linear optical and dielectric properties as well as gamma-ray protection capacities of PbO reinforced in TeO2–WO3 glasses: Comparative study

  • Published:
Applied Physics A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Linear optical properties, optical dielectric constants, and dielectric loss as well as gamma-ray protection capacities of PbO reinforced TeO2–WO3 glasses with chemical composition 20WO3–(80 − x)TeO2xPbO: x = 10 (WTPb1), 12.5 (WTPb2), 16.25 (WTPb3), 17.5 (WTPb4), and 20 (WTPb5) mol% have been investigated. Density of the investigated glasses gradually enhanced from 5.58 g/cm3 for WTPb1 sample to 5.90 g/cm3 for WTPb5 sample. The indirect optical energy band gap (EOptical) reduced from 2.28 to 2.10 eV. Urbach’s energy (ΔE) improved from 0.225 to 0.255 eV with increasing PbO content mol%. Optical real (\({\varepsilon }_{1}\)), imaginary (\({\varepsilon }_{2})\) parts of dielectric constant, dielectric loss (tan δ), the refractive index (n), and the extinction coefficient (k) were improved as PbO content enhanced in TWPb glasses. Insertion of PbO in the glass matrix has a direct constructive effect on both the mass (MAC) and linear (LAC) attenuation coefficients for all photon energy among all investigated samples. The highest values of MAC and LAC were possessed for WTPb5 sample, while the lowest values were possessed for WTPb1 sample. In terms of half-value layer (HVL) parameter, the lowest values of HVL were possessed for WTPb5. The effective atomic number (Zeff) of the WTPb glasses has a similar trend of MAC and LAC. Results confirm that WTPb glasses can be considered as a superior for radiation protection compared to some commercial concrete radiation shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. H.Y. Morshidy, M.S. Sadeq, Influence of cobalt ions on the structure, phonon emission, phonon absorption and ligand field of some sodium borate glasses. J. Non-Cryst. Solids 525, 119666–119671 (2019)

    Article  Google Scholar 

  2. A. Edukondalu, A. Hameed, B. Kavitha, R.V. Kumar, K.S. Kumar, Vibrational spectra and structure of Li2O–K2O–WO3–B2O3 glasses. Mater. Today. Process 2, 913–917 (2015)

    Article  Google Scholar 

  3. M.I. Sayyed, A. Ibrahim, M.A. Abdo, M.S. Sadeq, The combination of high optical transparency and radiation shielding effectiveness of zinc sodium borate glasses by tungsten oxide additions. J. Alloys Compd. 904, 164037 (2022)

    Article  Google Scholar 

  4. A. Mohamed, A.S. Afifi, M. Hassan, M. Abdallah, M. Milanova, H.Y. Aboul-Enein, A. Mohamed, Tungsten-based glasses for photochromic, electrochromic, gas sensors, and related applications: a review. J. Non Cryst. Solids 491, 43–54 (2018)

    Article  ADS  Google Scholar 

  5. A.M. Abdelghany, Photochromic behavior of tungsten ions in sodium metaphosphate glass and effect of oxidizing condition assessed by spectroscopic analysis. J. Non-Cryst. Solids 552, 120460 (2021)

    Article  Google Scholar 

  6. M.S. Sadeq, B.O. El-bashir, A.H. Almuqrin, M.I. Sayyed, The tungsten oxide within phosphate glasses to investigate the structural, optical, and shielding properties variations. J. Mater. Sci. Mater. Electron. 32, 12402–12413 (2021)

    Article  Google Scholar 

  7. A. Ibrahim, M.A. Farag, M.S. Sadeq, Towards highly transparent tungsten zinc sodium borate glasses for radiation shielding purposes. Ceram. Int. 48, 12079–12090 (2022)

    Article  Google Scholar 

  8. P. Bejot, F. Billard, C. Peureux, T. Diard, J. Picot-Clemente, C. Strutynski, P. Mathey, O. Mouawad, O. Faucher, K. Nagasaka, Y. Ohishi, F. Smektala, Filamentation-induced spectral broadening and pulse shortening of infrared pulses in tellurite glass. Opt. Commun. 380, 245–249 (2016)

    Article  ADS  Google Scholar 

  9. G. Lakshminarayana, K.M. Kaky, S.O. Baki, S. Ye, A. Lira, I.V. Kityk, M.A. Mahdi, Concentration dependent structural, thermal, and optical features of Pr3+-doped multicomponent tellurite glasses. J. Alloys Compd. 686, 769–784 (2016)

    Article  Google Scholar 

  10. J. Huang, L. Zhang, L. Xia, X. Shen, W. Wei, W. You, Highly efficient ~ 3.4 μm emission of Er3+-doped TeO2 based glasses via resonant energy transfer and multi-phonon relaxation processes. Opt. Mater. 108, 110387 (2020)

    Article  Google Scholar 

  11. Y. Zhang, Z. Xiao, H. Lei, L. Zeng, J. Tang, Er+3/Yb+3 co-doped tellurite glasses for optical fiber thermometry upon UV and NIR excitations. J. Lumin. 212, 61–68 (2019)

    Article  Google Scholar 

  12. M.M. Taniguchi, V.S. Zanuto, P.N. Portes, L.C. Malacarne, N.G.C. Astrath, J.D. Marconi, M.P. Belançon, Glass engineering to enhance Si solar cells: a case study of Pr3+-Yb3+ codoped tellurite-tungstate as spectral converter. J. Non-Cryst. Solids 526, 119717 (2019)

    Article  Google Scholar 

  13. H. Afifi, S. Marzouk, Ultrasonic velocity and elastic moduli of heavy metal tellurite glasses. Mater. Chem. Phys. 80, 517–523 (2003)

    Article  Google Scholar 

  14. H. Afifi, S. Marzouk, N. Abd el Aal, Ultrasonic characterization of heavy metal TeO2–WO3–PbO glasses below room temperature. Phys. B 390, 65–70 (2007)

    Article  ADS  Google Scholar 

  15. N.V. Ovcharenko, T.V. Smirnova, High refractive index and magneto–optical glasses in the systems TeO2–WO3–Bi2O3 and TeO2–WO3–PbO. J. Non-Cryst. Solids 291, 121–126 (2001)

    Article  ADS  Google Scholar 

  16. Y. Al-Hadeethi, M.I. Sayyed, H. Mohammed, L. Rimondin, X-ray photons attenuation characteristics for two tellurite based glass systems at dental diagnostic energies. Ceram. Int. 46, 251–257 (2020)

    Article  Google Scholar 

  17. Y. Al-Hadeethi, M.I. Sayyed, Y.S. Rammah, Fabrication, optical, structural and gamma radiation shielding characterizations of GeO2–PbO–Al2O3–CaO glasses. Ceram. Int. 46, 2055–2062 (2020)

    Article  Google Scholar 

  18. I. Akkurt, C. Basyigit, S. Kilincarslan, B. Mavi, A. Akkurt, Radiation shielding of concretes containing different aggregates. Cement Concr. Compos. 28(2), 153–157 (2006)

    Article  Google Scholar 

  19. M.I. Sayyed, Y. Al-Hadeethi, M.M. AlShammari, M. Ahmed, S.H. Al-Heniti, Y.S. Rammah, Physical, optical and gamma radiation shielding competence of newly borotellurite based glasses: TeO2–B2O3–ZnO–Li2O3–Bi2O3. Ceram. Int. 47, 611–618 (2021)

    Article  Google Scholar 

  20. M.S. Al-Buriahi, Y.S.M. Alajerami, A.S. Abouhaswa, A. Alalawi, T. Nutaro, B. Tonguc, Effect of chromium oxide on the physical, optical, and radiation shielding properties of lead sodium borate glasses. J. Non-Cryst. Solids 544, 120171 (2020)

    Article  Google Scholar 

  21. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E. Yousef, The impact of PbF2 on the ionizing radiation shielding competence and mechanical properties of TeO2–PbF2 glasses and glass-ceramics. Ceram. Int. 47, 2547–2556 (2021)

    Article  Google Scholar 

  22. Y.S. Rammah, E. Kavaz, U. Perişanoğlu, G. Kilic, F.I. El-Agawany, H.O. Tekin, Charged particles and gamma-ray shielding features of oxy fluoride semiconducting glasses: TeO2–Ta2O5–ZnO/ZnF2. Ceram. Int. 46, 25035–25042 (2020)

    Article  Google Scholar 

  23. H.H. Hegazy, M.S. Al-Buriahi, F. Alresheedi, F.I. El-Agawany, C. Sriwunkum, R. Neffati, Y.S. Rammah, Nuclear shielding properties of B2O3–Bi2O3–SrO glasses modified with Nd2O3: theoretical and simulation studies. Ceram. Int. 47, 2772–2780 (2021)

    Article  Google Scholar 

  24. G. Kilic, F.I. El Agawany, B.O. Ilik, K.A. Mahmoud, E. Ilik, Y.S. Rammah, Ta2O5 reinforced Bi2O3–TeO2–ZnO glasses: fabrication, physical, structural characterization, and radiation shielding efficacy. Opt. Mater. 112, 110757 (2021)

    Article  Google Scholar 

  25. Y.S. Rammah, I.O. Olarinoye, F.I. El-Agawany, A. El-Adawy, E. Yousef, The f-factor, neutron, gamma radiation and proton shielding competences of glasses with Pb or Pb/Bi heavy elements for nuclear protection applications. Ceram. Int. 46, 27163–27174 (2020)

    Article  Google Scholar 

  26. F.I. El-Agawany, K.A.-A. Mahmoud, H. Akyildirim, E. Yousef, H.O. Tekin, Y.S. Rammah, Physical, neutron, and gamma-rays shielding parameters for Na2O–SiO2–PbO glasses. Emerg. Mater. Res. 10(2), 227–237 (2021)

    Article  Google Scholar 

  27. N. Ekinci, K.A. Mahmoud, S. Sarıtaş, B. Aygün, M.M. Hessien, I. Bilici, Y.S. Rammah, Development of Tincal based polypropylene polymeric materials for radiation shielding applications: experimental, theoretical, and Monte Carlo investigations. Mater. Sci. Semicond. Process. 146, 106696 (2022)

    Article  Google Scholar 

  28. B. Aygün, Neutron and gamma radiation shielding properties of high-temperature-resistant heavy concretes including chromite and wolframite. J. Radiat. Res. Appl. Sci. 12(1), 352–359 (2019)

    Article  ADS  Google Scholar 

  29. A.I. Wozniak, V.S. Ivanov, O.A. Zhdanovich, V.I. Nazarov, A.S. Yegorov, Modern approaches to polymer materials protecting from ionizing radiation. Orient. J. Chem. 33, 2148–2163 (2017)

    Article  Google Scholar 

  30. A.H. Almuqrin, M.I. Sayyed, Radiation shielding characterizations and investigation of TeO2–WO3–Bi2O3 and TeO2–WO3–PbO glasses. Appl. Phys. A 127, 190 (2021)

    Article  ADS  Google Scholar 

  31. M. Dong, B.O. Elbashir, M.I. Sayyed, Enhancement of gamma ray shielding properties by PbO partial replacement of WO3 in ternary 60TeO2–(40 − x)WO3–xPbO glass system. Chalcogenide Lett. 14, 113–118 (2017)

    Google Scholar 

  32. D.K. Gaikwad, S.S. Obaid, M.I. Sayyed, R.R. Bhosale, V.V. Awasarmol, A. Kumar, M.D. Shirsat, P.P. Pawar, Comparative study of gamma ray shielding competence of WO3–TeO2–PbO glass system to different glasses and concretes. Mater. Chem. Phys. 213, 508–5170 (2018)

    Article  Google Scholar 

  33. E. Şakar, Ö.F. Özpolat, B. Alım, M.I. Sayyed, M. Kurudirek, Phy-X/PSD: development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiat. Phys. Chem. 166, 108496 (2020)

    Article  Google Scholar 

  34. U. Perişanoğlu, F.I. El-Agawany, E. Kavaz, M. Al-Buriahi, Y.S. Rammah, Surveying of Na2O3–BaO–PbO–Nb2O5–SiO2–Al2O3 glass-ceramics system in terms of alpha, proton, neutron and gamma protection features by utilizing GEANT4 simulation codes. Ceram. Int. 46, 3190–3202 (2020)

    Article  Google Scholar 

  35. H.M.H. Zakaly, M. Rashad, H.O. Tekin, H.A. Saudi, S.A.M. Issa, A.M.A. Henaish, Synthesis, optical, structural and physical properties of newly developed dolomite reinforced borate glasses for nuclear radiation shielding utilizations: an experimental and simulation study. Opt. Mater. 114, 110942 (2021)

    Article  Google Scholar 

  36. Y.S. Rammah, M.I. Sayyed, A.S. Abohaswa, H.O. Tekin, FTIR, electronic polarizability and shielding parameters of B2O3 glasses doped with SnO2. Appl. Phys. A 124, 650 (2018)

    Article  ADS  Google Scholar 

  37. H.O. Tekin, S.A.M. Issa, E.M. Ahmed, Y.S. Rammah, Lithium-fluoro borotellurite glasses: nonlinear optical, mechanical, characteristics and gamma radiation protection characteristics. Radiat. Phys. Chem. 190, 109819 (2022)

    Article  Google Scholar 

  38. H.A. Saudi, H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, M.M. Hessien, Y.S. Rammah, A.M.A. Henaish, Fabrication, FTIR, physical characteristics and photon shielding efficacy of CeO2 /sand reinforced borate glasses: experimental and simulation studies. Radiat. Phys. Chem. 191, 109837 (2022)

    Article  Google Scholar 

  39. A.S. Abouhaswa, F.I. El-Agawany, E.M. Ahmed, Y.S. Rammah, Optical, magnetic characteristics, and nuclear radiation shielding capacity of newly synthesized barium boro-vanadate glasses: B2O3–BaF2–Na2O–V2O5. Radiat. Phys. Chem. 192, 109922 (2022)

    Article  Google Scholar 

  40. M.S. Sadeq, H.Y. Morshidy, Effect of mixed rare-earth ions on the structural and optical properties of some borate glasses. Ceram. Int. 45, 18327–18332 (2019)

    Article  Google Scholar 

  41. A.A. El-Daly, M.A. Abdo, H.A. Bakr, M.S. Sadeq, Structure, stability and optical parameters of cobalt zinc borate glasses. Ceram. Int. 47, 31470–31475 (2021)

    Article  Google Scholar 

  42. T.S. Soliman, S.A. Vshivkov, Sh.I. Elkalashy, Structural, linear and nonlinear optical properties of Ni nanoparticles—polyvinyl alcohol nanocomposite films for optoelectronic applications. Opt. Mater. 107, 110037 (2020)

    Article  Google Scholar 

  43. I.S. Yahia, Y.S. Rammah, S. AlFaify, F. Yakuphanoglu, Optical characterization of nano-pentacene thin films. Superlattices Microstruct. 64, 58–69 (2013)

    Article  ADS  Google Scholar 

  44. N.F. Mott, E.A. Davis, Electronic Processes in Non-crystalline Materials, 2nd edn. (Oxford University Press, Oxford, 1977)

    Google Scholar 

  45. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92(5), 1324 (1953)

    Article  ADS  Google Scholar 

  46. S. Thakur, V. Thakur, A. Kaur, L. Singh, Structural, optical and thermal properties of nickel doped bismuth borate glasses. J. Non-Cryst. Solids 512, 60–71 (2019)

    Article  ADS  Google Scholar 

  47. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes. Ann. Nucl. Energy 24, 1389–1401 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah Bint Abdulrahman, University Researchers Supporting Project (Grant no. PNURSP2022R60), Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. S. Rammah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethical standards

Authors declare that this manuscript is original, has not been published before, and is not currently being considered for publication elsewhere.

Data availability statements and author contribution

Relevant research data are included in the text of the work. All authors contribute in conceptualization, methodology, software, validation, investigation, data curation, writing—review and editing, visualization.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marzouk, S.Y., Alsaif, N.A.M., Sadeq, M.S. et al. Enhancement of linear optical and dielectric properties as well as gamma-ray protection capacities of PbO reinforced in TeO2–WO3 glasses: Comparative study. Appl. Phys. A 128, 783 (2022). https://doi.org/10.1007/s00339-022-05931-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05931-0

Keywords

Navigation