Skip to main content
Log in

Utilizing dip-coated graphene/nanogold to enhance SPR-based fiber optic sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Optical fiber sensing is an important sensing technique where combining the advantage of using new materials such as graphene and the features of the optical fibers. Previously, the sensing probes were prepared by different methods such as sputtering; we are seeking for a new, easy, low-cost and not complicated method with superior advantages over other methods. In this paper, dip-coated sensing probes of gold film (Au), graphene/gold film/core (Gn/Au/core), gold nanoparticles/core (AuNPs/core) and graphene/gold nanoparticles/core (Gn/AuNPs/core) are prepared. The structures of probes were examined via scanning electron microscope and Raman spectroscopy. In the Gn/AuNPs/core structure, the Gn surface and AuNP surface are rough enough to increase the surface area of the sensor. Lead ions in water with different concentrations were detected via optical fiber surface plasmon resonance with the prepared probes. Sensor performance parameters for the fabricated probes were calculated. The Gn/AuNPs/core probe shows a superior sensitivity (Sn), figure of merit, signal-to-noise ratio and limit of detection among other sensors, which make it available for chemical and biological applications. In this work, the dip-coated graphene is a promising method for enhancing performance parameters of optical fiber sensors, not complicated, low cost and easy in comparison with commonly used sputtering method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Lecaruyer, M. Canva, J. Rolland, Metallic film optimization in a surface plasmon resonance biosensor by the extended Rouard method. Appl. Opt. 46, 2361–2369 (2007)

    ADS  Google Scholar 

  2. C. Perrotton, N. Javahiraly, M. Slaman, B. Dam, P. Meyrueis, Fiber optic surface plasmon resonance sensor based on wavelength modulation for hydrogen sensing. Opt. Express. 19, A1175–A1183 (2011)

    ADS  Google Scholar 

  3. S. Deng, P. Wang, X. Yu, Phase-sensitive surface plasmon resonance sensors: recent progress and future prospects. Sensors 17, 2819 (2017)

    ADS  Google Scholar 

  4. M.H.H. Hasib, J.N. Nur, C. Rizal, K.N. Shushama, Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condensed Matter. 4(2), 49 (2019)

    Google Scholar 

  5. Y.H. Huang, H.P. Ho, S.K. Kong, A.V. Kabashin, Phase-sensitive surface plasmon resonance biosensors: methodology, instrumentation and applications. Ann. Phys. 524(11), 637–662 (2012)

    Google Scholar 

  6. J. Homola, On the sensitivity of surface plasmon resonance sensors with spectral interrogation. Sens. Actuators Chem. 41(1–3), 207–211 (1997)

    Google Scholar 

  7. H. Vahed, C. Nadri, Ultra-sensitive surface plasmon resonance biosensor based on MoS2 graphene hybrid nanostructure with silver metal layer. Opt. Quant. Electron. 51(1), 1–13 (2019)

    Google Scholar 

  8. Z. Salamon, H. Angus-Macleod, G. Tollin, Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. Biochimica ET Biophysica Acta Reviews on Biomembranes. 1331(2), 131–152 (1997)

    Google Scholar 

  9. A.K. Sharma, B.D. Gupta, On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors. J. Appl. Phys. 101, 093111 (2007)

    ADS  Google Scholar 

  10. S.K. Srivastava, B.D. Gupta, Influence of ions on the surface plasmon resonance spectrum of a fiber optic refractive index sensor. Sensors Actuators B Chem. 156(2), 559–562 (2011)

    Google Scholar 

  11. J.C. Hsu, S.W. Jeng, Y.S. Sun, Simulation and experiments for optimizing the sensitivity of curved D-type optical fiber sensor with a wide dynamic range. Opt Commun. 341, 210–217 (2015)

    Google Scholar 

  12. E. Wijaya, C. Lenaerts, S. Maricot, J. Hastanin, S. Habraken, J.-P. Vilcot, R. Boukherroub, S. Szunerits, Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies. Curr. Opin. Solid State Mater. Sci. 15, 208–224 (2011)

    ADS  Google Scholar 

  13. A. Nisha, P. Maheswari, P.M. Anbarasan, K.B. Rajesh, Z. Jaroszewicz, Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt. Quant. Electron. 51, 1 (2019)

    Google Scholar 

  14. M.S. Rahman, M.R. Hasan, K.A. Rikta, M.S. Anower, A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt. Mater. 75, 567–573 (2018)

    ADS  Google Scholar 

  15. E. Kretschsmann, H. Reather, Radiative decay of non-radiative surface plasmons exited by light. Zeitschrift fur nature forschung 23, 2135–2136 (1968)

    ADS  Google Scholar 

  16. Q. Wang, J.Y. Jing, X.Z. Wang, L.Y. Niu, W.M. Zhao, A D-shaped fiber long-range surface plasmon resonance sensor with high Q-factor and temperature self-compensation. IEEE Trans. Instrum. Meas. 69, 2218–2224 (2020)

    Google Scholar 

  17. F. Xia, H. Song, Y. Zhao, W.M. Zhao, Q. Wang, X.Z. Wang, B.T. Wang, Z.X. Dai, Ultra-high sensitivity SPR fiber sensor based on multilayer nanoparticle and Au film coupling enhancement. Measurement 164, 108083 (2020)

    Google Scholar 

  18. C. Nylander, B. Liendberg, T. Lind, Gas detection by means of surface plasmons resonance. Sens. Actuators 3, 79–88 (1982)

    Google Scholar 

  19. R.C. Jorgenson, S.S. Yee, A fiber-optic chemical sensor based on surface plasmon resonance. Sens. Actuators, B. 12, 213–220 (1993)

    Google Scholar 

  20. R. Slavík, J. Homola, J. Ctyroky, E. Brynda, Novel spectral fiber optic sensor based on surface plasmon resonance. Sens. Actuators B. 74, 106–111 (2001)

    Google Scholar 

  21. S. Rajan, B. Chand, D. Gupta, Surface plasmon resonance based fiber-optic sensor for the detection of pesticide. Sens. Actuators B. 123, 661–666 (2007)

    Google Scholar 

  22. Q. Wang, J.-Y. Jing, W.-M. Zhao, X.-C. Fan, X.-Z. Wang, A novel fiber-based symmetrical long-range surface plasmon resonance biosensor with high quality factor and temperature self-reference. IEEE Trans. Nanotechnol. 18, 1137–1143 (2019)

    ADS  Google Scholar 

  23. J. Yao, M.J. StewartME, T.W. Lee, S.K. Gray, J.A. Rogers, R.G. Nuzzo, Seeing molecules by eye: surface plasmon resonance imaging at visible wavelengths with high spatial resolution and submonolayer sensitivity. Angew. Chem. Int. Ed. 47(27), 5013–5017 (2008)

    Google Scholar 

  24. P. Bhatia, B.D. Gupta, Fabrication and characterization of a surface plasmon resonance based fiber optic urea sensor for biomedical applications. Sensors Actuators B Chem. 161(1), 434–438 (2012)

    Google Scholar 

  25. A. Hanning, J. Roeraade, J.J. Delrow, R.C. Jorgenson, Enhanced sensitivity of wavelength modulated surface plasmon resonance devices using dispersion from a dye solution. Sens. Actuators B. 158, 372–376 (2011)

    Google Scholar 

  26. N. Reckinger, A. Vlad, S. Melinte, J.-F. Colomer, M.L. Sarrazin, Graphene-coated holey metal films: tunable molecular sensing by surface plasmon resonance. Appl. Phys. Lett. 102, 211108 (2013)

    ADS  Google Scholar 

  27. X.F. Wang, Plasmon spectrum of two-dimensional electron systems with Rashba spin-orbit interaction. Phys. Rev. B 72(8), 085317 (2005)

    ADS  Google Scholar 

  28. Y. Liu, X. Dong, P. Chen, Biological and chemical sensors based on graphene materials. Chem Soc Rev. 41(6), 2283–2307 (2012)

    Google Scholar 

  29. M. Kim, C.Y. Jeong, H. Heo, S. Kim, Optical reflection modulation using surface plasmon resonance in a graphene-embedded hybrid plasmonic waveguide at an optical communication wavelength. Opt Lett. 40(6), 871–874 (2015)

    ADS  Google Scholar 

  30. Z.H. Ni, H.M. Wang, J. Kasim, H.M. Fan, T. Yu, Y.H. Yu, Y.P. Feng, Z.X. Shen, Graphene thickness determination using reflection and contrast spectroscopy. Nano Lett. 7, 2758–2763 (2007)

    ADS  Google Scholar 

  31. D.W. Horsell, P.J. Hale, A.K. Savchenko, Mechanical manipulation and measurement of graphene by atomic force microscopy. Microscopy Anal. 25, 9–11 (2011)

    Google Scholar 

  32. W. Wei, J. Nong, Y. Zhu, G. Zhang, N. Wang, S. Luo, N. Chen, G. Lan, C.J. Chuang, Y. Huang, Graphene/Au-enhanced plastic clad silica fiber optic surface plasmon resonance sensor. Plasmonics. 13, 483–491 (2018)

    Google Scholar 

  33. O. Salihoglu, S. Balci, C. Kocabas, Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl. Phys. Lett. 100(21), 213110 (2012)

    ADS  Google Scholar 

  34. M. Gomaa, G.A. Fattah, Synthesis of graphene and graphene oxide by microwave plasma chemical vapor deposition. J Am Sci. 12(3), 72–80 (2016)

    Google Scholar 

  35. G. Frens, Controlled nucleation for the regulation of the particle size in monodiperse gold suspensions. Nat. Phys. Sci. 241(105), 20–22 (1973)

    ADS  Google Scholar 

  36. M. Gomaa, G.A. Fattah, Optical properties of graphene oxide thin film reduced by low cost diode laser. Appl. Phys. A 126(7), 519 (2020)

    ADS  Google Scholar 

  37. J.P. Anhalt, J.A. Washington II., Preparation and storage of antimicrobials, in Manual of clinical microbiology, 5th edn., ed. by W.J. Hausler, K.L. Herrmann, H.D. Isenberg, H. Shadomy (American Society for Microbiology, Washington, DC, 1991), pp. 1199–1200

    Google Scholar 

  38. M.F. Sultan, A.A. Al-Zuky, S.A. Kadhim, Surface plasmon resonance based fiber optic sensor: theoretical simulation and experimental realization. J. Al-Nahrain Univ. 21(1), 65–70 (2018)

    Google Scholar 

  39. P.K. Maharana, T. Srivastava, R. Jha, On the performance of highly sensitive and accurate graphene-on-aluminum and silicon based SPR biosensor for visible and near infrared. Plasmonics 9(5), 1113–1120 (2014)

    Google Scholar 

  40. N. Cennamo et al., Low cost sensors based on SPR in a plastic optical fiber for biosensor implementation. Sensors 11(12), 11752–11760 (2011)

    ADS  Google Scholar 

  41. Y. Zhao, S.-Y. Zhang, G.-F. Wen, Z.-X. Han, Graphene-based optical fiber ammonia gas sensor. Instrum Sci. Technol. 46(1), 12–27 (2017)

    Google Scholar 

  42. N.M. Razali, N.F. Zaidi, P.N. Jaafar, A. Hamzah, F. Ahmad, S. Ambran, Optical fiber tip sensor coated with chitosan for lead ion detection. AIP Publish. 2203, 020035 (2020)

    Google Scholar 

  43. B.S. Boruah, R. Biswas, An optical fiber based surface plasmon resonance technique for sensing of lead ions: a toxic water pollutant. Opt. Fiber Technol. 46, 152–156 (2018)

    ADS  Google Scholar 

  44. F.H. Suhailin, A.A. Alwahib, Y. Mustapha-Kamil, M.H. Abu-Bakar, N.M. Huang, M.A. Mahdi, Fiber-based surface plasmon resonance sensor for lead ion detection in aqueous solution. Plasmonics 15, 1369–1376 (2020)

    Google Scholar 

  45. P. Dhara, R. Kumar, L. Binetti, H.T. Nguyen, L.S. Alwis, T. Sun, K.T.V. Grattan, Optical fiber-based heavy metal detection using the localized surface plasmon resonance technique. IEEE Sensors (2019). https://doi.org/10.1109/JSEN.2019.2921701

    Article  Google Scholar 

  46. R. Verma, B.D. Gupta, Detection of heavy metal ions in contaminated water by surface plasmon resonance based optical fibre sensor using conducting polymer and chitosan. Food Chem. 166, 568–575 (2015)

    Google Scholar 

  47. N. Cennamo, D. Massarotti, R. Galatus, L. Conte, L. Zeni, Performance comparison of two sensors based on surface plasmon resonance in a plastic optical fiber. Sensors 13, 721–735 (2013)

    ADS  Google Scholar 

  48. R. Tabassum, R. Kant, Recent trends in surface plasmon resonance based fiber–optic gas sensors utilizing metal oxides and carbon nanomaterials as functional entities. Sensors Actuators B Chem. 310, 127813 (2020)

    Google Scholar 

  49. V. Semwal, B.D. Gupta, Highly selective SPR based fiber optic sensor for the detection of hydrogen peroxide, sensors Actuators. B Chem. 329, 129062 (2021)

    Google Scholar 

  50. W. Wei, J. Nong, L. Tang, N. Wang, C.J. Chuang, Y. Huang, Graphene-MoS2 hybrid structure enhanced fiber optic surface plasmon resonance sensor. Plasmonics 12, 1205–1212 (2017)

    Google Scholar 

  51. Y. Cai, W. Li, Y. Feng, J.S. Zhao, G. Bai, J. Xu, J.Z. Li, Sensitivity enhancement of WS2-coated SPR-based optical fiber biosensor for detecting glucose concentration. Chin. Phys. B. 29, 110701 (2020)

    ADS  Google Scholar 

  52. C. Odacı, U. Aydemir, The surface plasmon resonance-based fiber optic sensors: a theoretical comparative study with 2D TMDC materials. Results Opt. 3, 100063 (2021)

    Google Scholar 

  53. J.K. Nayak, P.K. Maharana, R. Jha, Dielectric over-layer assisted graphene, its oxide and MoS2-based fibre optic sensor with high field enhancement. J. Phys. D. Appl. Phys. 50, 405112 (2017)

    Google Scholar 

  54. S. Kaushik, U.K. Tiwari, S.S. Pal, R.K. Sinha, Rapid detection of Escherichia coli using fiber optic surface plasmon resonance immunosensor based on biofunctionalized Molybdenum disulfide (MoS2) nanosheets. Biosens. Bioelectron. 126, 501–509 (2019)

    Google Scholar 

  55. S. Kumar, Z. Guo, R. Singh, Q. Wang, B. Zhang, S. Cheng, F.Z. Liu, C. Marques, B.K. Kaushik, R. Jha, MoS2 Functionalized multicore fiber probes for selective detection of shigella bacteria based on localized plasmon. J. Light. Technol. 39, 4069–4081 (2021)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Gomaa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, M., Salah, A. & Abdel Fattah, G. Utilizing dip-coated graphene/nanogold to enhance SPR-based fiber optic sensor. Appl. Phys. A 128, 56 (2022). https://doi.org/10.1007/s00339-021-05196-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05196-z

Keywords

Navigation