Skip to main content
Log in

Nanoarchitectonics earth-abundant chalcogenide Cu2SnS3 thin film using ultrasonic spray pyrolysis for visible light-driven photocatalysis

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Photocatalysis is the process which used to remove the dye from the effluent. Here, we have used earth-abundant chalcogenide Cu2SnS3 (CTS) thin film as a photocatalyst to remove the dye (methylene blue) under visible light irradiation. A low cost ultrasonic spray pyrolysis was used to deposit the film on soda-lime glass substrate in a single step at optimized temperature 500 °C. The structural, morphological and optical properties of the CTS film have been studied using XRD, SEM and UV–Vis spectroscopy. Structural analysis confirms the formation of Cu2SnS3 tetragonal structure without any secondary impurities. SEM image indicates the surface of this film is smooth and uniform. Bandgap of film is found to be 1.35 eV. Photocatalysis activity of CTS thin film is studied by degrading methylene blue (MB) dye (1 × 10–5 M) in water solution under visible light irradiation. It degrades 90% MB in 3 h. To evaluate the industrial effluent, we have studied the photocatalytic activity in different pH (4, 7, 9) medium. It shows that the MB degradation is faster in the base medium compare to acidic or neutral medium. It takes 1 h to degrade 90% dye in base medium. Films are showing good repeatable performance of the photocatalytic activity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.B. Djurišić, Y.H. Leung, A.M.C. Ng, Strategies for improving the efficiency of semiconductor metal oxide photocatalysis. Mater. Horizons. 1, 400–410 (2014)

    Article  Google Scholar 

  2. N. Shaham-Waldmann, Y. Paz, Away from TiO2: a critical minireview on the developing of new photocatalysts for degradation of contaminants in water. Mater. Sci. Semicond. Process. 42, 72–80 (2016). https://doi.org/10.1016/j.mssp.2015.06.068

    Article  Google Scholar 

  3. A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997)

    Article  Google Scholar 

  4. I.A. Perales-Martínez, V. Rodríguez-González, S.W. Lee, S. Obregón, Facile synthesis of InVO4/TiO2 heterojunction photocatalysts with enhanced photocatalytic properties under UV-vis irradiation. J. Photochem. Photobiol. A Chem. 299, 152–158 (2015). https://doi.org/10.1016/j.jphotochem.2014.11.021

    Article  Google Scholar 

  5. H. Han, R. Bai, Highly effective buoyant photocatalyst prepared with a novel layered-TiO2 configuration on polypropylene fabric and the degradation performance for methyl orange dye under UV–Vis and Vis lights. Sep. Purif. Technol. 73, 142–150 (2010)

    Article  Google Scholar 

  6. Y. Li, J. Yan, Q. Su, E. Xie, W. Lan, Preparation of graphene–TiO2 nanotubes/nanofibers composites as an enhanced visible light photocatalyst using a hybrid synthetic strategy. Mater. Sci. Semicond. Process. 27, 695–701 (2014)

    Article  Google Scholar 

  7. A. Di Mauro, M. Cantarella, G. Nicotra, V. Privitera, G. Impellizzeri, Low temperature atomic layer deposition of ZnO: applications in photocatalysis. Appl. Catal. B Environ. 196, 68–76 (2016)

    Article  Google Scholar 

  8. A. Samad, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Photocatalytic oxidation and simultaneous removal of arsenite with CuO/ZnO photocatalyst. J. Photochem. Photobiol. A Chem. 325, 97–103 (2016)

    Article  Google Scholar 

  9. M.K. Singha, A. Patra, V. Rojwal, K.G. Deepa, D. Kumar, Ultrasonic spray pyrolysis deposited ZnO thin film for photocatalytic activity. AIP Conf. Proc. 2082, 030023 (2019). https://doi.org/10.1063/1.5093841

    Article  Google Scholar 

  10. M.K. Singha, A. Patra, Highly efficient and reusable ZnO microflower photocatalyst on stainless steel mesh under UV-Vis and natural sunlight. Opt. Mater. 107, 110000 (2020)

    Article  Google Scholar 

  11. A. Samad, M. Furukawa, H. Katsumata, T. Suzuki, S. Kaneco, Single step fabrication of ZnO microflower thin films for highly efficient and reusable photocatalytic activity. J. Mater. Sci.: Mater. Electron. 325, 13578–13587 (2020)

    Google Scholar 

  12. Y. Tan, Z. Lin, W. Ren, W. Long, Y. Wang, X. Ouyang, Facile solvothermal synthesis of Cu2SnS3 architectures and their visible-light-driven photocatalytic properties. Mater. Lett. 89, 240–242 (2012). https://doi.org/10.1016/j.matlet.2012.08.117

    Article  Google Scholar 

  13. F. Vaquero, R.M. Navarro, J.L.G. Fierro, Influence of the solvent on the structure, morphology and performance for H2 evolution of CdS photocatalysts prepared by solvothermal method. Appl. Catal. B Environ. 203, 753–767 (2017)

    Article  Google Scholar 

  14. S.K. Batabyal, S.E. Lu, J.J. Vittal, Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4 nanocrystals. Cryst. Growth Des. 16, 2231–2238 (2016)

    Article  Google Scholar 

  15. R. Sumi, A.R. Warrier, C. Vijayan, Visible-light driven photocatalytic activity of $β$-indium sulfide (In2S3) quantum dots embedded in Nafion matrix. J. Phys. D. Appl. Phys. 47, 105103 (2014)

    Article  ADS  Google Scholar 

  16. N. Ding, Y. Fan, Y. Luo, D. Li, Q. Meng, Enhancement of H2 evolution over new ZnIn2S4/RGO/MoS2 photocatalysts under visible light. APL Mater. 3, 104417 (2015)

    Article  ADS  Google Scholar 

  17. M.A. Zhukovskiy, A.L. Stroyuk, V.V. Shvalagin, N.P. Smirnova, O.S. Lytvyn, A.M. Eremenko, Photocatalytic growth of CdS, PbS, and CuxS nanoparticles on the nanocrystalline TiO2 films. J. Photochem. Photobiol. A Chem. 203, 137–144 (2009)

    Article  Google Scholar 

  18. X. Yang, Z. Wang, X. Lv, Y. Wang, H. Jia, Enhanced photocatalytic activity of Zn-doped dendritic-like CdS structures synthesized by hydrothermal synthesis. J. Photochem. Photobiol. A Chem. 329, 175–181 (2016)

    Article  Google Scholar 

  19. Q. Wang, Q. Gao, A.M. Al-Enizi, A. Nafady, S. Ma, Recent advances in MOF-based photocatalysis: environmental remediation under visible light. Inorg. Chem. Front. 7, 300–339 (2020)

    Article  Google Scholar 

  20. B. Singh, J. Na, M. Konarova, T. Wakihara, Y. Yamauchi, C. Salomon, M.B. Gawande, Functional mesoporous silica nanomaterials for catalysis and environmental applications. Bull. Chem. Soc. Jpn. 93, 1459–1496 (2020)

    Article  Google Scholar 

  21. X. Zhan, C. Si, J. Zhou, Z. Sun, MXene and MXene-based composites: synthesis, properties and environment-related applications. Nanoscale Horiz. 5, 235–258 (2020)

    Article  ADS  Google Scholar 

  22. S. Rahaman, M.K. Singha, M.A. Sunil, K. Ghosh, Effect of Copper concentration on CTS thin films for solar cell absorber and photocatalysis application. Superlatt. Microstruct. 147, 106589 (2020)

    Article  Google Scholar 

  23. S. Rahaman, M.A. Sunil, M.K. Singha, K. Ghosh, Studies of ultrasonically sprayed Cu2SnS3 thin films by varying Sn concentration. Mater. Today Proceed. (2021). https://doi.org/10.1016/j.matpr.2021.02.657

    Article  Google Scholar 

  24. S. Rahaman, M.A. Sunil, M.K. Singha, K. Ghosh, Ultrasonic spray pyrolysis deposited CTS thin film: variation of thiourea concentration in the film. Mater. Today Proceed. (2021). https://doi.org/10.1016/j.matpr.2021.04.513

    Article  Google Scholar 

  25. Q. Ren, W. Wang, H. Shi, Y. Liang, Synthesis and shape-dependent visible-light-driven photocatalytic activities of Cu2ZnSnS4 nanostructures, Micro. Nano Lett. 9, 505–508 (2014)

    Article  Google Scholar 

  26. J. Zai, F. Cao, N. Liang, K. Yu, Y. Tian, H. Sun, X. Qian, Rose-like I-doped Bi2O2CO3 microspheres with enhanced visible light response: DFT calculation, synthesis and photocatalytic performance. J. Hazard. Mater. 321, 464–472 (2017). https://doi.org/10.1016/j.jhazmat.2016.09.034

    Article  ADS  Google Scholar 

  27. J. Zhong, Q. Wang, D. Chen, L. Chen, H. Yu, H. Lu, Z. Ji, Biomolecule-assisted solvothermal synthesis of 3D hierarchical Cu2 FeSnS4 microspheres with enhanced photocatalytic activity. Appl. Surf. Sci. 343, 28–32 (2015). https://doi.org/10.1016/j.apsusc.2015.03.066

    Article  ADS  Google Scholar 

  28. M. Nakashima, T. Yamaguchi, H. Itani, J. Sasano, M. Izaki, Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Phys. Status Solidi. 12, 761–764 (2015)

    Article  Google Scholar 

  29. S. Vadivel, D. Maruthamani, B. Paul, S.S. Dhar, A. Habibi-Yangjeh, S. Balachandran, B. Saravanakumar, A. Selvakumar, K. Selvam, Biomolecule-assisted solvothermal synthesis of Cu2SnS3 flowers/RGO nanocomposites and their visible-light-driven photocatalytic activities. RSC Adv. 6, 74177–74185 (2016). https://doi.org/10.1039/c6ra12068g

    Article  ADS  Google Scholar 

  30. S. Rahaman, M.A. Sunil, M.K. Singha, K. Ghosh, Temperature dependent growth of Cu2SnS3 thin films using ultrasonic spray pyrolysis for solar cell absorber layer and photocatalytic application. Mater. Res. Exp. 6, 106417 (2019)

    Article  Google Scholar 

  31. B. Patel, M. Waldiya, A. Ray, Highly phase-pure spray-pyrolysed Cu2SnS3 thin films prepared by hybrid thermal treatment for photovoltaic applications. J. Alloys Compd. 745, 347–354 (2018). https://doi.org/10.1016/j.jallcom.2018.02.220

    Article  Google Scholar 

  32. V.V. Brus, I.S. Babichuk, I.G. Orletskyi, P.D. Maryanchuk, V.O. Yukhymchuk, V.M. Dzhagan, I.B. Yanchuk, M.M. Solovan, I.V. Babichuk, Raman spectroscopy of Cu-Sn-S ternary compound thin films prepared by the low-cost spray-pyrolysis technique. Appl. Opt. 55, B158–B162 (2016). https://doi.org/10.1364/AO.55.00B158

    Article  Google Scholar 

  33. B. Patel, R.K. Pati, I. Mukhopadhyay, A. Ray, Effect of vacuum and sulphur annealing on the structural properties of spray deposited Cu2SnS3 thin films. Vacuum 158, 263–270 (2018)

    Article  ADS  Google Scholar 

  34. S. Thiruvenkadam, D. Jovina, A.L. Rajesh, The influence of deposition temperature in the photovoltaic properties of spray deposited CZTS thin films. Sol. Energy. 106, 166–170 (2014)

    Article  ADS  Google Scholar 

  35. D. Patidar, K.S. Rathore, N.S. Saxena, K. Sharma, T.P. Sharma, Energy band gap and conductivity measurement of CdSe thin films. Chalcogenide Lett. 5, 21–25 (2008)

    Google Scholar 

  36. T.S. Moss, Optical properties of semicoundutors (Academic Press, NY, 1959)

    Google Scholar 

  37. K.L. Chopra, S.R. Das, Thin Film Solar Cells (Plenum Press, New York, 1983)., (n.d.)

  38. Y.-X. Guo, W.-J. Cheng, J.-C. Jiang, J.-H. Chu, The effect of substrate temperature, Cu/Sn ratio and post-annealing on the phase-change and properties of Cu2SnS3 film deposited by ultrasonic spray pyrolysis. J. Mater. Sci. Mater. Electron. 27, 4636–4646 (2016)

    Article  Google Scholar 

  39. G. Poongodi, P. Anandan, R.M. Kumar, R. Jayavel, Studies on visible light photocatalytic and antibacterial activities of nanostructured cobalt doped ZnO thin films prepared by sol–gel spin coating method, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 237–243 (2015)

    Article  ADS  Google Scholar 

  40. X. Zhang, X. Liu, C. Fan, Y. Wang, Y. Wang, Z. Liang, A novel BiOCl thin film prepared by electrochemical method and its application in photocatalysis. Appl. Catal. B Environ. 132, 332–341 (2013)

    Article  Google Scholar 

  41. K.G. Deepa, P.C. Ramamurthy, M.K. Singha, Mesoporous Cu2ZnSnS4 nanoparticle film as a flexible and reusable visible light photocatalyst. Opt. Mater. (2019). https://doi.org/10.1016/j.optmat.2019.109492

    Article  Google Scholar 

  42. N.M. Diantoro, A. Kusumaatmaja, K. Triyana, Study on photocatalytic properties of TiO2 nanoparticle in various pH condition IOP Conf Series. J Phys Conf Ser 1011, 012069 (2018)

    Article  Google Scholar 

  43. A. Apostolopoulou, S. Mahajan, R. Sharma, E. Stathatos, Novel development of nanocrystalline kesterite Cu2ZnSnS4 thin film with high photocatalytic activity under visible light illumination. J. Phys. Chem. Solids. 112, 37–42 (2018)

    Article  ADS  Google Scholar 

  44. Y.M. Hunge, M.A. Mahadik, V.L. Patil, A.R. Pawar, S.R. Gadakh, A.V. Moholkar, P.S. Patil, C.H. Bhosale, Visible light assisted photoelectrocatalytic degradation of sugarcane factory wastewater by sprayed CZTS thin films. J. Phys. Chem. Solids. 111, 176–181 (2017)

    Article  ADS  Google Scholar 

  45. K. Shahzad, M.B. Tahir, M. Sagir, N.A. Alhakamy, M.R. Kabli, Synthesis of novel p-n heterojunction Cu2SnS3/Ti3+−TiO2 for the complete tetracycline degradation in few minutes and photocatalytic activity under simulated solar irradiation. Ceramics Int 47(22), 31337–31348 (2017)

    Article  Google Scholar 

  46. C. Nefzi, M. Souli, Y. Cuminal, N. Kamoun-Turki, Effect of sulfur concentration on structural, optical and electrical properties of Cu2FeSnS4 thin films for solar cells and photocatalysis applications. Superlatt. Microstruct. 124, 17–29 (2018)

    Article  ADS  Google Scholar 

  47. M.K. Singha, A. Patra, V. Rojwal, K.G. Deepa, Single-step fabrication of ZnO microflower thin films for highly efficient and reusable photocatalytic activity. J. Mater. Sci. Mater. Electron. 31, 13578–13587 (2020)

    Article  Google Scholar 

  48. V. Maheskumar, B. Vidhya, Investigation on the morphology and photocatalytic activity of Cu3SnS4 synthesized by ball milling and solvothermal method. J. Photochem. Photobiol. A Chem. 356, 521–529 (2018). https://doi.org/10.1016/j.jphotochem.2017.12.026

    Article  Google Scholar 

  49. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci. Rep. 8, 1–9 (2018). https://doi.org/10.1038/s41598-018-25673-5

    Article  ADS  Google Scholar 

  50. I. Kazeminezhad, A. Sadollahkhani, Influence of pH on the photocatalytic activity of ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 27, 4206–4215 (2016). https://doi.org/10.1007/s10854-016-4284-0

    Article  Google Scholar 

  51. S.A. Phaltane, S.A.V.T.S. Bhat, P.S.P.S.D. Sartale, Photocatalytic degradation of methylene blue by hydrothermally synthesized CZTS nanoparticles. J Mater Sci Mater Electron (2017). https://doi.org/10.1007/s10854-017-6527-0

    Article  Google Scholar 

Download references

Acknowledgements

We thank to MNCF, IISc to provide us to use characterization facilities for above work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monoj Kumar Singha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahaman, S., Singha, M.K. Nanoarchitectonics earth-abundant chalcogenide Cu2SnS3 thin film using ultrasonic spray pyrolysis for visible light-driven photocatalysis. Appl. Phys. A 128, 36 (2022). https://doi.org/10.1007/s00339-021-05174-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05174-5

Keywords

Navigation