Skip to main content

Advertisement

Log in

Dy2O3-unpurified hydroxyapatite: a promising thermoluminescent sensor and biomimetic nanotherapeutic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, nanostructured hydroxyapatite (nano-Hap) was synthesized by following a hydrothermal process using calcium hydroxide and ammonium phosphate. The nano-Hap was unpurified with different amounts of dysprosium oxide (Dy2O3), from 0.5 to 2.0 wt%. Its physicochemical properties were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). TEM confirmed the formation of rod structures (L/D aspect ratio > 1) with average sizes ranging from ~ 15 to 19 nm in diameter, and ~ 26 to 32 nm in length. The presence of the monoclinic and hexagonal crystalline phases of Hap was confirmed by XRD. The thermoluminescence (TL) studies showed a linear relationship between the Dy2O3 concentration and TL intensity induced by gamma radiation in a dose range from 10 to 200 Gy. The nano-Hap unpurified with 2.0 wt% of Dy2O3 showed the highest TL response. Additionally, in the perspective of exploring the therapeutic potential of Dy2O3-unpurified Hap, the viability of human prostatic epithelial cells was evaluated. The safety of pure Hap was confirmed by performing resazurin/resorufin fluorescence-based assays. A significant toxicity was observed as a function of the impurity content and nanopowders concentration. In summary, the nano-Hap TL results make it a good candidate for ionizing radiation sensoring and, the in vitro test encourages the development of a biomimetic Dy-Hap drug-free nanotherapeutic platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Sadat-Shojai, M.T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater. 9, 7591–7621 (2013). https://doi.org/10.1016/j.actbio.2013.04.012

    Article  Google Scholar 

  2. H. Daneshvar, M. Shafaei, F. Manouchehri, S. Kakaei, F. Ziaie, Influence of morphology and chemical processes on thermoluminescence response of irradiated nanostructured hydroxyapatite. J. Lumin. 219, 116906 (2020). https://doi.org/10.1016/j.jlumin.2019.116906

    Article  Google Scholar 

  3. D. Aquilano, M. Bruno, M. Rubbo, L. Pastero, F.R. Massaro, Twin laws and energy in monoclinic hydroxyapatite, Ca5(PO4)3(OH). Cryst. Growth Des. 15, 411–418 (2015). https://doi.org/10.1021/cg501490e

    Article  Google Scholar 

  4. G. Ma, X.Y. Liu, Hydroxyapatite: hexagonal or monoclinic? Cryst. Growth Des. 9, 2991–2994 (2009). https://doi.org/10.1021/cg900156w

    Article  Google Scholar 

  5. V. Rodríguez Lugo, V.M. Castaño, E. Rubio-Rosas, Biomimetic growth of hydroxylapatite on SiO 2-PMMA hybrid coatings. Mater. Lett. 184, 265–268 (2016). https://doi.org/10.1016/j.matlet.2016.08.068

    Article  Google Scholar 

  6. V. Rodríguez-Lugo, C. Angeles, A. DelaIsla, V.M. Castano, Effect of bio-calcium oxide on the morphology of hydroxyapatite. Int. J. Basic Appl. Sci. 4, 395 (2015). https://doi.org/10.14419/ijbas.v4i4.5240

    Article  Google Scholar 

  7. A. Szcześ, L. Hołysz, E. Chibowski, Synthesis of hydroxyapatite for biomedical applications. Adv. Colloid Interf. Sci. 249, 321–330 (2017). https://doi.org/10.1016/j.cis.2017.04.007

    Article  Google Scholar 

  8. R.E. Riman, W.L. Suchanek, K. Byrappa, C.W. Chen, P. Shuk, C.S. Oakes, Solution synthesis of hydroxyapatite designer particulates. Solid State Ionics 151, 393–402 (2002). https://doi.org/10.1016/S0167-2738(02)00545-3

    Article  Google Scholar 

  9. V.M. Rusu, C.H. Ng, M. Wilke, B. Tiersch, P. Fratzl, M.G. Peter, Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials 26, 5414–5426 (2005). https://doi.org/10.1016/j.biomaterials.2005.01.051

    Article  Google Scholar 

  10. H. Zhang, B.W. Darvell, Morphology and structural characteristics of hydroxyapatite whiskers: Effect of the initial Ca concentration, Ca/P ratio and pH. Acta Biomater. 7, 2960–2968 (2011). https://doi.org/10.1016/j.actbio.2011.03.020

    Article  Google Scholar 

  11. V. Rodríguez-Lugo, E. Salinas-Rodríguez, R.A. Vázquez, K. Alemán, A.L. Rivera, Hydroxyapatite synthesis from a starfish and β-tricalcium phosphate using a hydrothermal method. RSC Adv. 7, 7631–7639 (2017). https://doi.org/10.1039/c6ra26907a

    Article  ADS  Google Scholar 

  12. V. Jokanović, D. Izvonar, M.D. Dramićanin, B. Jokanović, V. Živojinović, D. Marković, B. Dačić, Hydrothermal synthesis and nanostructure of carbonated calcium hydroxyapatite. J. Mater. Sci. Mater. Med. 17, 539–546 (2006). https://doi.org/10.1007/s10856-006-8937-z

    Article  Google Scholar 

  13. X. Zhang, K.S. Vecchio, Hydrothermal synthesis of hydroxyapatite rods. J. Cryst. Growth. 308, 133–140 (2007). https://doi.org/10.1016/j.jcrysgro.2007.07.059

    Article  ADS  Google Scholar 

  14. Y. Zhu, L. Xu, C. Liu, C. Zhang, N. Wu, Nucleation and growth of hydroxyapatite nanocrystals by hydrothermal method. AIP Adv. 8, 085221 (2018). https://doi.org/10.1063/1.5034441

    Article  ADS  Google Scholar 

  15. L. An, W. Li, Y. Xu, D. Zeng, Y. Cheng, G. Wang, Controlled additive-free hydrothermal synthesis and characterization of uniform hydroxyapatite nanobelts. Ceram. Int. 42, 3104–3112 (2016). https://doi.org/10.1016/j.ceramint.2015.10.099

    Article  Google Scholar 

  16. S. Zhong, J. Chen, Q. Li, Z. Wang, X. Shi, K. Lin, Q. Zhang, Assembly synthesis of spherical hydroxyapatite with hierarchical structure. Mater. Lett. 194, 1–4 (2017). https://doi.org/10.1016/j.matlet.2017.01.146

    Article  Google Scholar 

  17. V. Rodríguez-Lugo, T.V.K. Karthik, D. Mendoza-Anaya, E. Rubio-Rosas, L.S. Villaseñor Cerón, M.I. Reyes-Valderrama, E. Salinas-Rodríguez, Wet chemical synthesis of nanocrystalline hydroxyapatite flakes: effect of pH and sintering temperature on structural and morphological properties. R. Soc. Open Sci. 5, 180962 (2018). https://doi.org/10.1098/rsos.180962

    Article  ADS  Google Scholar 

  18. S. Lopez Ortiz, A.D. Mendoza, C. Sanchez, M.E. Fernandez Garcia, R.E. Salinas, M.I. Reyes Valderrama, V. Rodriguez Lugo, The pH effect on the growth of hexagonal and monoclinic hydroxyapatite synthesized by the hydrothermal method. Nanomaterial 2020, 1–10 (2020)

    Article  Google Scholar 

  19. D. Sánchez-Campos, D. Mendoza-Anaya, M.I. Reyes-Valderrama, S. Esteban-Gómez, V. Rodríguez-Lugo, Cationic surfactant at high pH in microwave HAp synthesis. Mater. Lett. 265, 3–6 (2020). https://doi.org/10.1016/j.matlet.2020.127416

    Article  Google Scholar 

  20. J. Liu, X. Ye, H. Wang, M. Zhu, B. Wang, H. Yan, The influence of pH and temperature on the morphology of hydroxyapatite synthesized by hydrothermal method. Ceram. Int. 29, 629–633 (2003). https://doi.org/10.1016/S0272-8842(02)00210-9

    Article  Google Scholar 

  21. Y. Qi, J. Shen, Q. Jiang, B. Jin, J. Chen, X. Zhang, The morphology control of hydroxyapatite microsphere at high pH values by hydrothermal method. Adv. Powder Technol. 26, 1041–1046 (2015). https://doi.org/10.1016/j.apt.2015.04.008

    Article  Google Scholar 

  22. A. Rabiei, T. Blalock, B. Thomas, J. Cuomo, Y. Yang, J. Ong, Microstructure, mechanical properties, and biological response to functionally graded HA coatings. Mater. Sci. Eng. C. 27, 529–533 (2007). https://doi.org/10.1016/j.msec.2006.05.036

    Article  Google Scholar 

  23. M.J. Robles-Águila, J.A. Reyes-Avendaño, M.E. Mendoza, Structural analysis of metal-doped (Mn, Fe Co, Ni, Cu, Zn) calcium hydroxyapatite synthetized by a sol-gel microwave-assisted method. Ceram. Int. 43, 12705–12709 (2017). https://doi.org/10.1016/j.ceramint.2017.06.154

    Article  Google Scholar 

  24. F. Ziaie, N. Farhadi Moein, M. Shafaei, Thermoluminescent characteristics of nano-structure hydroxyapatite:Dy. Kerntechnik 79, 500–503 (2014). https://doi.org/10.3139/124.110445

    Article  Google Scholar 

  25. P. Seth, S. Aggarwal, S. Rao, Thermoluminescence study of rare earth ion (Dy3+) doped LiF: Mg crystals grown by EFG technique. J. Rare Earths. 30, 641–646 (2012). https://doi.org/10.1016/S1002-0721(12)60105-7

    Article  Google Scholar 

  26. A. Tesch, C. Wenisch, K.H. Herrmann, J.R. Reichenbach, P. Warncke, D. Fischer, F.A. Müller, Luminomagnetic Eu3 +- and Dy3 +-doped hydroxyapatite for multimodal imaging. Mater. Sci. Eng. C. 81, 422–431 (2017). https://doi.org/10.1016/j.msec.2017.08.032

    Article  Google Scholar 

  27. T. Tite, A.C. Popa, L.M. Balescu, I.M. Bogdan, I. Pasuk, J.M.F. Ferreira, G.E. Stan, Cationic substitutions in hydroxyapatite: current status of the derived biofunctional effects and their in vitro interrogation methods. Materials (Basel). 11, 1–62 (2018). https://doi.org/10.3390/ma11112081

    Article  Google Scholar 

  28. I.A. Neacsu, A.E. Stoica, B.S. Vasile, E. Andronescu, Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials 9, 239 (2019). https://doi.org/10.3390/nano9020239

    Article  Google Scholar 

  29. K. Madhukumar, H.K. Varma, M. Komath, T.S. Elias, V. Padmanabhan, C.M.K. Nair, Photoluminescence and thermoluminescence properties of tricalcium phosphate phosphors doped with dysprosium and europium. Bull. Mater. Sci. 30, 527–534 (2007). https://doi.org/10.1007/s12034-007-0082-x

    Article  Google Scholar 

  30. S.L. Ortiz, V. Rodríguez-Lugo, L.S. Villaseñor-Cerón, M.I. Reyes-Valderrama, D.E. Salado-Leza, D. Mendoza-Anaya, The Potential of the Hydroxyapatite as a thermoluminescent sensor of ionizing radiation. ICBI 8, 85 (2020). https://doi.org/10.29057/icbi.v8iEspecial.6310

    Article  Google Scholar 

  31. J. Azorin Nieto, Present status and future trends in the development of thermoluminescent materials. Appl. Radiat. Isot. 117, 135–142 (2016). https://doi.org/10.1016/j.apradiso.2015.11.111

    Article  Google Scholar 

  32. L.S. Villaseñor Cerón, V. Rodríguez Lugo, J.A. Arenas Alatorre, M.E. Fernández-Garcia, M.I. Reyes-Valderrama, P. González-Martínez, D. Mendoza Anaya, Characterization of hap nanostructures doped with AgNp and the gamma radiation effects. Results Phys. 15, 102702 (2019). https://doi.org/10.1016/j.rinp.2019.102702

    Article  Google Scholar 

  33. D. Mendoza-Anaya, E. Flores-Díaz, G. Mondragón-Galicia, M.E. Fernández-García, E. Salinas-Rodríguez, T.V.K. Karthik, V. Rodríguez-Lugo, The role of Eu on the thermoluminescence induced by gamma radiation in nano hydroxyapatite. J. Mater. Sci. Mater. Electron. 29, 15579–15586 (2018). https://doi.org/10.1007/s10854-018-9147-4

    Article  Google Scholar 

  34. H. Daneshvar, M. Shafaei, F. Manouchehri, S. Kakaei, F. Ziaie, The role of La, Eu, Gd, and Dy lanthanides on thermoluminescence characteristics of nano-hydroxyapatite induced by gamma radiation. SN Appl. Sci. 1, 1146 (2019). https://doi.org/10.1007/s42452-019-1162-4

    Article  Google Scholar 

  35. A.K. Sánchez Lafarga, F.P. Pacheco Moisés, A. Gurinov, G.G. Ortiz, G.G. Carbajal Arízaga, Dual responsive dysprosium-doped hydroxyapatite particles and toxicity reduction after functionalization with folic and glucuronic acids. Mater. Sci. Eng. C. 48, 541–547 (2015). https://doi.org/10.1016/j.msec.2014.12.033

    Article  Google Scholar 

  36. M.R. Chapman, A.G. Miller, T.G. Stoebe, Thermoluminescence in hydroxyapatite. Med. Phys. 6, 494–499 (1979). https://doi.org/10.1118/1.594611

    Article  Google Scholar 

  37. V. Rodríguez-Lugo, D.E. Salado-Leza, S.L. Ortiz, D. Mendoza-Anaya, L.S. Villaseñor-Cerón, M.I. Reyes-Valderrama, Overview of nanostructured hydroxyapatite as an alternative to treat cancer. ICBI. 8, 115 (2020). https://doi.org/10.29057/icbi.v8iEspecial.6466

    Article  Google Scholar 

  38. J. Reyes-Gasga, E.L. Martínez-Piñeiro, É.F. Brès, Crystallographic structure of human tooth enamel by electron microscopy and x-ray diffraction: hexagonal or monoclinic? J. Microsc. 248, 102–109 (2012). https://doi.org/10.1111/j.1365-2818.2012.03653.x

    Article  Google Scholar 

  39. D. Sánchez-campos, M.I.R. Valderrama, S. López-ortíz, D. Salado-leza, M.E. Fernández-garcía, D. Mendoza-anaya, E. Salinas-rodríguez, V. Rodríguez-lugo, Modulated monoclinic hydroxyapatite: the effect of ph in the microwave assisted method. Minerals 11, 1–13 (2021). https://doi.org/10.3390/min11030314

    Article  Google Scholar 

  40. M. Chandrasekhar, D.V. Sunitha, N. Dhananjaya, H. Nagabhushana, S.C. Sharma, B.M. Nagabhushana, C. Shivakumara, R.P.S. Chakradhar, Thermoluminescence response in gamma and UV irradiated Dy2O3 nanophosphor. J. Lumin. 132, 1798–1806 (2012)

    Article  Google Scholar 

  41. D. Salado-Leza, E. Mendoza-Mendoza, J.A. Castillo-Ramírez, C. Escudero-Lourdes, L.A. García-Cerda, A simple approach to room-temperature synthesis of cubic Al-doped HfO2 nanoparticles and their toxicity evaluation in normal prostate cells. Mater. Lett. 274, 128048 (2020). https://doi.org/10.1016/j.matlet.2020.128048

    Article  Google Scholar 

  42. T. Pousa Ribeiro, F. Monteiro, M. Laranjeira, Duality of iron (III) doped nano hydroxyapatite in triple negative breast cancer monitoring and as a drug-free therapeutic agent. Ceram. Int. 46, 16590 (2020). https://doi.org/10.1016/j.ceramint.2020.03.231

    Article  Google Scholar 

  43. X. Cui, T. Liang, C. Liu, Y. Yuan, J. Qian, Correlation of particle properties with cytotoxicity and cellular uptake of hydroxyapatite nanoparticles in human gastric cancer cells. Mater. Sci. Eng. C. 67, 453–460 (2016). https://doi.org/10.1016/j.msec.2016.05.034

    Article  Google Scholar 

Download references

Acknowledgements

Our gratitude to Ph.D. Bernardo Yañez Soto for providing the facilities to evaluate the Hap/cell interaction by fluorescence microscopy at the National Laboratory for Out of Equilibrium Matter Engineering (LANIMFE). In vitro evaluation was partially supported by UASLP (Project/C19-FAI-05-87.87). We would like to thank Ph.D. Mildred Quintana Ruíz and Eng. Celina González Gallegos for their support to measure fluorescence in solution. We also thank CONACYT for supporting the generation of infrastructure through the INFR-2015-251767 project and for the scholarship awarded to Susana López Ortiz belonging to the Doctorate program 0432 in Materials Sciences from the Autonomous University of the State of Hidalgo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mendoza Anaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz, S.L., Lugo, V.R., Salado-Leza, D. et al. Dy2O3-unpurified hydroxyapatite: a promising thermoluminescent sensor and biomimetic nanotherapeutic. Appl. Phys. A 127, 893 (2021). https://doi.org/10.1007/s00339-021-05010-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05010-w

Keywords

Navigation