Skip to main content
Log in

Formation of a single drop of molten steel following bursting of liquid film in a vertical steel plate illuminated by a high energy laser

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation and dynamics of a single drop of liquid under the influence of gravity can be experienced as everyday phenomena, and have been the subject of scientific investigations since at least the work of Leonardo da Vinci in the early 1500s and Mariotte in the 1680s. Experiences with liquid drops in everyday life are captured by poets and artists as well as scientists, whose theoretical and experimental investigations develop fundamental understanding of drops with size < 1 mm to > 107 m. This paper presents observations of the formation of a single liquid drop of molten steel following bursting of a liquid film formed by illuminating a steel plate by a high energy laser. The hole morphology is analyzed with a proposed kinematic model of hole expansion for the very early stages in the bursting of the hole. Estimates of the hole eccentricity, area, perimeter, and circularity obtained from the model are presented and discussed. Experimental measurements show that a single drop of liquid steel detaches from the end of a neck that then cools to room temperature. Measurements also show that the liquid drop oscillates while falling under gravity. No satellite drops are observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. John Keats (1818) “LXV. - To Mrs. Wylie,” Letters of Keats, Project Gutenberg, [“yet was back in time to save one drop of water being spilt.”]

  2. John Keats (1819) “XCVI. - To Joseph Severn,” Letters of Keats, Project Gutenberg, [“- what a drop of water in the ocean is a Miniature.”]

  3. Miklós Szakáll, Subir K. Mitra, Karoline Diehl, Stephan Borrmann, Shapes and oscillations of falling raindrops: a review. Atmos. Res. 97(4), 416–425 (2010)

    Article  Google Scholar 

  4. Stalactite. [Online]. Available: https://en.wikipedia.org/wiki/Stalactite

  5. W. Thomson (Lord Kelvin) (1862) “On the secular cooling of the earth. Proc. Roy. Soc. Edinburgh, 4: 610-611

  6. W. Thomson, (Lord Kelvin), On the rigidity of the earth; shiftings of the earth’s instantaneous axis of rotation; and irregularities of the earth as a timekeeper. Phil. Trans. Roy. Soc. Lond. 153, 573–582 (1863)

    ADS  Google Scholar 

  7. W. Thomson, (Lord Kelvin), “On the age of the earth,.” Nature 51, 438–440 (1895)

    Article  ADS  Google Scholar 

  8. W. Thomson, (Lord Kelvin), The age of the earth as an abode fitted for life. Jnl. Trans. Victoria Institute 31, 11–35 (1899)

    Google Scholar 

  9. Philip C. England, Peter Molnar, Frank M. Richter, Kelvin, perry and the age of the earth. Am. Sci. 95(4), 342–349 (2007)

    Article  Google Scholar 

  10. G. Cummins, M.P.Y. Desmulliez, Inkjet printing of conductive materials: a review. Circuit World 38(4), 193–213 (2012)

    Article  Google Scholar 

  11. R.C. Tolman, The effect of droplet size on surface tension. Jnl. Chem. Phys. 17(3), 333–337 (1949)

    Article  ADS  Google Scholar 

  12. I. Egry, Surface tension measurements of liquid metals by the oscillating drop technique. Jnl. Mat. Sci. 26, 2997–3003 (1991)

    Article  ADS  Google Scholar 

  13. B. Vinet, J.P. Garandet, L. Cortella, Surface tension measurements of refractory liquid metals by the pendant drop method under ultrahigh vacuum conditions: Extension and comments on Tate’s law. Jnl. Appl. Phys. 73, 3830–3834 (1993)

    Article  ADS  Google Scholar 

  14. J. Juza, The pendant drop method of surface tension measurement: equation interpolating the shape factor tables for several selected planes. Czechoslovak Jnl. Phys. 47(3), 351–352 (1997)

    Article  ADS  Google Scholar 

  15. O.E. Yildirim, Q. Xu, O.A. Basaran, Analysis of the drop weight method. Phys. Fluids 17, 062107 (2005)

    Article  ADS  MATH  Google Scholar 

  16. B. Lautrup, “Surface tension,” Ch. 5 in “Physics of continuous matter: Exotic and everyday phenomena in the macroscopic world,” The Niels Bohr Institute, Denmark, pp. 73, 1998–2010. https://www.routledge.com/Physics-of-Continuous-Matter-Exotic-and-Everyday-Phenomena-in-the-Macroscopic/Lautrup/p/book/9780367865115

  17. J.D. Berry, M.J. Neeson, R.R. Dagastine, D.Y.C. Chan, R.F. Tabor, Measurement of surface and interfacial tension using pendant drop tensiometry. Jnl. Colloid Interface Sci. 454, 226–237 (2015)

    Article  ADS  Google Scholar 

  18. R. P. Woodward, Surface tension measurements using the drop shape method. First ten angstroms

  19. A. Vaks, O.S. Gutareva, S.F.M. Breitenbach, E. Avirmed, A.J. Mason, A.L. Thomas, A.V. Osinzev, A.M. Kononov, G.M. Henderson, Speleothems reveal 500,000-year history of Siberian permafrost. Science 340, 183–186 (2013)

    Article  ADS  Google Scholar 

  20. A. Da Silva, J. Volpp, J. Frostevarg, A.F.H. Kaplan, Acceleration of metal drops in a laser beam. Appl. Phys. A 127(4), 1–13 (2021)

    Google Scholar 

  21. N. Bowering, C. Meier, Sticking behavior and transformation of tin droplets on silicon wafers and multilayer-coated mirrors. Appl. Phys. A 125(9), 1–12 (2019)

    Article  Google Scholar 

  22. H. Brüning, F. Vollertsen, Form filling behaviour of preforms generated by laser rod end melting. Lasers Manuf. Conf. 2015, 10 (2015)

    Google Scholar 

  23. E. Govekar, A. Jeri, M. Weigl, M. Schmidt, Laser droplet generation: application to droplet joining. CIRP Ann. Manuf. Technol. 58, 205 (2009)

    Article  Google Scholar 

  24. A. Kuznetsov, A. Jeromen, E. Govekar, C.I.R.P. Ann, Manuf. Technol. 63, 225 (2014)

    Article  Google Scholar 

  25. M. Gatzen, T. Radel, C. Thomy, F. Vollertsen, Wetting behavior of eutectic Al Si droplets on zinc coated steel substrates. J. Mater. Process. Technol. 214, 123 (2014)

    Article  Google Scholar 

  26. B. Bizjan, A. Kuznetsov, A. Jeromen, E. Govekar, B. Sirok, High-speed camera thermometry of laser droplet generation. Appl. Thermal Eng. 110(5), 298–305 (2017)

    Article  Google Scholar 

  27. J.P. Oliveira, Z. Zeng, Laser welding. Metals 9, 69 (2019). https://doi.org/10.3390/met9010069

    Article  Google Scholar 

  28. M. Shome, M. Tumuluru, Welding and Joining of Advanced High Strength Steels (AHSS)’’ (Woodhead Publishing, Cambridge, 2015)

    Book  Google Scholar 

  29. E. Sinkora, “Traditional Versus Laser Welding,” SME Media, October 28, 2019. [Online]. Available: https://www.sme.org/technologies/articles/2019/october/traditional-versus-laser-welding/

  30. “Laser Welding & Durable Design: How Our Customer Made More than 5 Million Products in 5 Years,” December 16, 2018. [Online]. Available: https://facteon.global/news/laser-welding-and-durable-design-how/

  31. D. Maudlin, L. O’Neill, I. De Mallie, F. Arnold, L.A. Florence, J. Hartke, D.O. Kashinski, J.E. Johnson, J. Lamb, R. Huffman, D.E. Riegner, N.F. Fell, T. Kreidler, G. Tamm, N.F. Fell, Effects of rotation and inert thermal sinks on laser heating of cold, rolled-steel cylinders: preliminary experimental results. Jnl. Dir. Energy 6, 198–208 (2017)

    Google Scholar 

  32. J. Broussard, N. Hedglin, T. Le, P. Meyers, T. Halverson, M. Lanzerotti, K. Ingold, D. Kashinski, J. Harke, “Experimental Measurement of Hole Formation in Metal as a Function of Angle of Incidence from a HEL,” 20th Annual Directed Energy Science & Technology Symposium (DEPS) 2018, Oxnard, CA, Feb. 26 - Mar. 2, 2018

  33. J. Kazmi, S. Joiner, J. Broussard, D. Brewster, D. Kashinski, M. Lanzerotti, J. Hartke, “Engaging Steel Coupons with High Energy Lasers: Analysis of Full-Beam Penetration Time as a Function of Orientation,” 21st Annual Directed Energy Science & Technology Symposium (DEPS) 2019, Destin, FL, April 8-12, 2019

  34. ATHENA Laser weapon system prototype. [Online]. Available as of May 30, 2021: https://www.lockheedmartin.com/en-us/products/athena.html/

  35. Rheinmetall, MBDA building high-energy lasers for Germany’s Navy. [Online]. Available as of May 30, 2021: https://www.defensenews.com/global/europe/2021/01/28/rheinmetall-mbda-building-high-energy-lasers-for-germanys-navy/

  36. Q. Lehua, H. Yi, L. Jun, Z. Daicong, S. He, Embedded printing trace planning for aluminum droplets depositing on dissolvable supports with varying section. Robot. Comput. Integr. Manu. 63, 101898 (2020)

    Article  Google Scholar 

  37. H. Yi, L.-H. Qi, J. Luo, Y. Jiang, W. Deng, Pinhole formation from liquid metal microdroplets impact on solid surfaces. Appl. Phys. Lett. 108, 041601 (2016)

    Article  ADS  Google Scholar 

  38. H. Yi, L. Qi, J. Luo, D. Zhang, H. Li, X. Hou, Intl. Jnl. Mach. Tools Manu. 130–131, 1–11 (2018)

    Google Scholar 

  39. Leonardo da Vinci, The Notebooks of Leonardo Da Vinci: Arranged, Rendered into English and Introduced by Edward MacCurdy, vol. 1 (Reynal & Hitchcock, New York, 1938)

    Google Scholar 

  40. Leonardo da Vinci, The Notebooks of Leonardo Da Vinci: Arranged, Rendered into English and Introduced by Edward MacCurdy, vol. 2 (Reynal & Hitchcock, New York, 1938)

    Google Scholar 

  41. Codex Arundel - - Leonardo notebook (Highlights) + Codex Arundel (full notebook)

  42. British Library. Contents: Notebook of Leonardo da Vinci (“The Codex Arundel”), 1478-1518

  43. Edmé Mariotte, Traité du mouvement des eaux et des autres corps fluides, divisé en V parties, par feu M. Mariotte, mis en lumière par les soins de M. de La Hire E. Michallet, Paris, 1686. Translated into English by John Theophilus Desaguliers, The Motion of Water and Other Fluids: Being a Treatise of Hydrostaticks London: J. Senex and W. Taylor, 1718. Goutte d’eau is mentioned on pp. 30, 34,120, 198, 278 (goutte d’eau étoit tombée dans un certain temps), 296, 298

  44. J. C. Maxwell, “Capillary action,” Encylopaedia Britannica

  45. P. S. Laplace, Traité de Méchanique Céleste, Tome Quatrième, Supplement au livre X, Tension is mentioned on pp. 69 and p. 77, 1805. [Online]. Available: https://archive.org/details/traitdumouvemen01marigoog/page/n7/mode/2up

  46. T. Young, III. An essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond 95, 65–87 (1805)

    ADS  Google Scholar 

  47. Felix Savart, “Mémoire sur la constitution des veines liquides lancées par des orifices circulaires en mince paroi,” Annales de Chimie, vol. 53, no. 337, 1833

  48. J. M. W. Bush, “Interfacial phenomena, Ch. 13, Fluid Sheets,” MIT OCW: 18.357 Interfacial Phenomena, pp. 49-54, Fall 2010

  49. T. Tate, On the magnitude of a drop of liquid formed under different circumstances. Phil. Mag. S. 27(181), 176–180 (1864)

    Article  Google Scholar 

  50. A.M. Worthington, A Study of Splashes (Longmans, Green, and Co., USA, 1908)

    Google Scholar 

  51. H.E. Edgerton, E.A. Hauser, W.B. Tucker, Studies in drop formation as revealed by the high-speed motion camera. J. Phys. Chem. 41(7), 1017–1028 (1937)

    Article  Google Scholar 

  52. D. J. K. Stuart, “Analysis of Reynolds Number Effects in Fluid Flow through Two-dimensional Cascades,” Aeronautical Res. Council Rep. and Memoranda., R. & M. No. 2920 (15, 260) A. R. C. Technical Report. 1955

  53. D.H. Peregrine, G. Shoker, A. Symon, The bifurcation of liquid bridges. J. Fluid Mech. 212, 25–39 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  54. E. Becker, W.J. Hiller, T.A. Kowalewski, Experimental and theoretical investigation of large amplitude oscillations of liquid droplets. Jnl. Fluid Mech. 231, 189–210 (1991)

    Article  ADS  MATH  Google Scholar 

  55. E. Becker, W.J. Hiller, T.A. Kowalewski, Nonlinear dynamics of viscous droplets. Jnl. Fluid Mech. 258, 191–216 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. J. Eggers, Universal pinching of 3D axisymmetric free-surface flow. Phys. Rev. Lett. 71(21), 3458–3460 (1993)

    Article  ADS  Google Scholar 

  57. J. Eggers, T.F. Dupont, Drop formation in a one-dimensional approximation of the Navier-Stokes equation. J. Fluid Mech. 262, 205–221 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. J. Eggers, Theory of drop formation. Phys. Fluids 7, 941 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. J. Eggers, Drop formation - an overview. ZAMM - Z. Angew. Math. Mech. 85(6), 400–410 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. J. Eggers, Post-breakup solutions of Navier-Stokes and Stokes threads. Phys. Fluids 26, 072104 (2014)

    Article  ADS  MATH  Google Scholar 

  61. J. Eggers, M.A. Fontelos, Singularities: Formation, Structure, and Propagation (Cambridge University Press, Cambridge, 2015)

    Book  MATH  Google Scholar 

  62. X.D. Shi, M.P. Brenner, S.R. Nagel, A cascade of structure in a drop falling from a faucet. Science 265, 219–222 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  63. X. Zhang, O.A. Basaran, An experimental study of dynamics of drop formation. Phys. Fluids 7(6), 1184–1203 (1995)

    Article  ADS  Google Scholar 

  64. O. B. Fawehinmi, P. H. Gaskell, P. K. Jimack, N. Kapur, H. M. Thompson A combined experimental and computational fluid dynamics analysis of the dynamics of drop formation. Proc. IMechE, Part. C: J. Mech. Eng. Sci., 219: 1-15 (2005)

  65. V. Grubelnick, M. Marhl, Drop formation in a falling stream of liquid. Am. J. Phys. 73(5), 415–419 (2005)

    Article  ADS  Google Scholar 

  66. H. Dong, W.W. Carr, J.F. Morris, An experimental study of drop-on-demand drop formation. Phys. Fluids 18, 072102 (2006)

    Article  ADS  Google Scholar 

  67. D.M. Henderson, W.G. Pritchard, L.B. Smolka, On the pinch-off of a pendant drop of viscous fluid. Phys. Fluids 9, 3188 (1997)

    Article  ADS  Google Scholar 

  68. A. Haenlein, “Disintegration of a liquid jet,” Forschung auf dem Gebiete des Ingenieurwesens, vol. III, no. 4, April 1931. Technical Memorandums, National Advisory Committee for Aeronautics, No. 659, Washington, DC, Feb. 1932

  69. E.F. Goedde, M.C. Yuen, Experiments on liquid jet instability. J. Fluid Mech. 40, 495–511 (1970)

    Article  ADS  Google Scholar 

  70. K.C. Chaudhary, L.G. Redekopp, The nonlinear instability of a liquid jet. Part 1, Theory. J. Fluid Mech. 96(2), 257–274 (1980)

    Article  ADS  MATH  Google Scholar 

  71. K.C. Chaudhary, T. Maxworthy, The nonlinear instability of a liquid jet. Part 2, experiments on jet behavior before droplet formation. J. Fluid Mech. 96(2), 275–286 (1980)

    Article  ADS  MATH  Google Scholar 

  72. K.C. Chaudhary, T. Maxworthy, The nonlinear instability of a liquid jet. Part 3, experiments on satellite drop formation and control. J. Fluid Mech. 96(2), 287–297 (1980)

    Article  ADS  MATH  Google Scholar 

  73. C. Clanet, J.C. Lasheras, Transition from dripping to jetting. J. Fluid Mech. 383, 307–326 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Z. Néda, B. Bakó, E. Rees, The dripping faucet revisited. Chaos 6(1), 59–62 (1996)

    Article  ADS  Google Scholar 

  75. P. Coullet, L. Mahadevan, C. Riera, Return map for the chaotic dripping faucet. Prog. Theor. Phys. Supplement 139, 507–516 (2000)

    Article  ADS  MATH  Google Scholar 

  76. J. Job, R. Patel, P. N. Pritchard, C. Royer, “The dripping faucet: Investigation of behavior in water droplet formation,” Final Paper, Phys. 6268, Georgia Institute of Tech., 2011

  77. J. Job, R. Patel, P. N. Pritchard, C. Royer, “Drip Drip ’Til You Drop: An Investigation of Dripping Faucet Dynamics,” Final Paper, Phys. 6268, Georgia Institute of Tech., 2011

  78. H. Suetani, K. Soijima, R. Matsuoka, U. Partitz, H. Hata, Manifold learning approach for chaos in the dripping faucet. Phys. Fluids 18, 072102 (2006)

    Google Scholar 

  79. H. Lamb, On the oscillations of a viscous spheroid. Proc. Lond. Math. Soc. 13(1), 51–70 (1881)

    Article  MathSciNet  MATH  Google Scholar 

  80. William Thomson (Lord Kelvin), “Oscillations of a liquid sphere,” pp. 384-386, 1890

  81. J. W. Strutt (Lord Rayleigh), “On the capillary phenomena of jets,” Proc. Roy. Soc. London, vol. 29, pp. 71-97, 1897

  82. J. W. Strutt (Lord Rayleigh), “Some Applications of Photography,” Proc. Roy. Inst. Great Britain, vol. 13, pp. 261-273, 1891. Also in Nature, vol. 44 (1133), pp. 249-254

  83. S. Chandrasekhar, The oscillations of a viscous liquid globe. Proc. London Math. Soc. 3, 141–149 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  84. S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford, 1961), pp. 466–477

    MATH  Google Scholar 

  85. W.H. Reid, The oscillations of a viscous liquid drop. Quart. Appl. Math. 18, 86–89 (1960)

    Article  MathSciNet  Google Scholar 

  86. G. Thorsen, R.M. Stordalen, S.G. Terjesen, On the terminal velocity of circulating and oscillating liquid drops. Chem. Eng. Sci. 23, 413–426 (1968)

    Article  Google Scholar 

  87. C.A. Morrison, R.P. Leavitt, D.E. Wortman, The extended Rayleigh theory of the oscillation of liquid droplets. Jnl. Fluid Mech. 104, 295–309 (1981)

    Article  ADS  MATH  Google Scholar 

  88. M. Perez, Y. Brechet, L. Salvo, M. Papoular, M. Suery, Oscillation of liquid drops under gravity: influence of shape on the resonance frequency. Europhys. Lett. 47(2), 189–195 (1999)

    Article  ADS  Google Scholar 

  89. T. Matsumoto, H. Fujii, T. Ueda, M. Kamai, K. Nogi, Oscillating drop method using a falling droplet. Rev. Sci. Instru. 75, 1219 (2004)

    Article  ADS  Google Scholar 

  90. D. V. Lyubimov, V. V. Konovalov, T. P. Lyubimova, I. Egry, Small amplitude shape oscillations of a spherical liquid drop with surface viscosity. Jnl. Fluid Mech. 677, 1–14 (2011). https://doi.org/10.1017/jfm.2011.76.

    Article  MathSciNet  MATH  Google Scholar 

  91. C. López, A. Hirsa, Fast focusing using a pinned-contact oscillating liquid lens. Nature Photon 2, 610–613 (2008)

    Article  Google Scholar 

  92. S.K. Ramalingam, O.A. Basaran, Axisymmetric oscillation modes of a double droplet system. Phys. Fluids 22, 112111 (2010)

    Article  ADS  Google Scholar 

  93. C.F. Tilger, J.D. Olles, A.H. Hirsa, Phase behavior of oscillating double droplets. Appl. Phys. Lett. 103, 264105 (2013). https://doi.org/10.1063/1.4858487

    Article  ADS  Google Scholar 

  94. T.S. Eliot, “Little Gidding,” September, 1942. [“Between melting and freezing The soul’s sap quivers.”]

  95. M. Lanzerotti, K. Brakke, K. Allen, J. Hartke, Bursting of molten steel thick films in a steel plate illuminated by a high energy laser. Appl. Phys. Lett. 115, 115043702 (2019)

    Article  Google Scholar 

  96. T. Nishizuka, Y. Sato, T. Takamizawa, K. Sugisawa, and T. Yamamura, in Proc. 16th European Conf. on Thermophysical Properties, Imperial College, London, 2002

  97. K. Morohoshi, M. Uchikoshi, M. Isshiki, H. Fukuyama, Surface Tension of Liquid Iron as Functions of Oxygen Activity and Temperature. ISIJ Intl. 51(10), 1580–1586 (2011)

    Article  Google Scholar 

  98. M. Gugliotti, M.S. Baptista, M.J. Politi, Surface tension gradients induced by temperature: the thermal Marangoni effect. Jnl. Chem. Educ. 81(6), 824–826 (2004)

    Article  Google Scholar 

  99. Mark B. Villarino, “Ramanujan’s Perimeter of an Ellipse,” February 1, 2008. https://arxiv.org/pdf/math/0506384.pdf

  100. Paul Bourke, “Circumference of an Ellipse Collected by Paul Bourke, Corrections and contributions by David Cantrell and Charles Karney,” updated June 2013

  101. Stanislav Sykora, “Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae,” December 27, 2005

  102. Paul Abbott, “On the Perimeter of an Ellipse,” Online. Available: http://paulbourke.net/geometry/ellipsecirc/Abbott.pdf

  103. S.F. Ahmadi, S. Nath, C.M. Kingett, P. Yue, J.B. Boreyko, How soap bubbles freeze. Nature Comm. 10(2531), 1–9 (2019). https://doi.org/10.1038/s41467-019-10021-6

    Article  Google Scholar 

Download references

Acknowledgements

The views expressed herein are those of the authors and do not reflect the position of the United States Military Academy, the Department of the Army, or the Department of Defense. M. Lanzerotti thanks Norah Stapleton (US Army) for bringing to her attention phase transitions in the 2019 paper “How soap bubbles freeze” by S. F. Ahmadi, S. Nath, C. M. Kingett, P. Yue, and J. B. Boreyko, in Nature Communications [103] and thanks J. B. Boreyko for discussions of the units (1/s) for the Rayleigh frequency in Eqn. 1.1 in [90]. M. Lanzerotti thanks K. Sutherland and A. Pinos (both at IDT Vision) for support with MotionStudio software; C. Gerving, T. Book, J. Capps, P. Chapman, B. Huff, T. Halverson, D. Phillips, and D. Kashinski (USMA) for discussions; J. Bishop and Z. Lachance (USMA) for assistance operating the laser and for cutting the steel sheets in the machine shop; and J. Bluman, R. Ellingsen, J. Keena, R. Wilson, and K. Meyer for support of USMA Department of Civil and Mechanical Engineering and measurements of deflection of the steel plates after drop formation and cooling to room temperature. M. Lanzerotti, K. Allen, and J. Hartke acknowledge the Photonics Research Center, USMA, ARO, DE-JTO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Y. Lanzerotti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 2 (MP4 27127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanzerotti, M.Y., Brakke, K., Allen, K. et al. Formation of a single drop of molten steel following bursting of liquid film in a vertical steel plate illuminated by a high energy laser. Appl. Phys. A 127, 638 (2021). https://doi.org/10.1007/s00339-021-04680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04680-w

Keywords

Navigation