Skip to main content
Log in

Study of electrical and dielectric properties of Sr3CoSb2O9 perovskite by impedance spectroscopy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Triple perovskite Sr3CoSb2O9 was found to be orthorhombic having space group Immm from the Rietveld refinement of X-ray diffraction data. Impedance analysis of Sr3CoSb2O9 was performed to study the presence of different electro-active regions, electrical transport mechanism and origin of colossal dielectric constant in the temperature and frequency range of 273–423 K and 40 Hz–3 MHz, respectively. An equivalent circuit model (RgCg)(RgbQgb)(ReQe) was used to explain the complex impedance plane plots. The Rg and Rgb derived from Z View fitting of the impedance (Z) data reflect semiconducting behavior of Sr3CoSb2O9. Reduction in Z′ was observed as a function of temperature and frequency which indicates increase in ac conductivity and negative temperature coefficient of resistance. In order to explain the electrical conduction mechanisms in grains and grain boundaries the variable range hopping model was employed. AC conductivity as a function of frequency follows Jonscher’s power law. The ac conduction mechanism was explained from temperature dependent variation of frequency exponents n1 and n2. The modulus analysis confirmed the presence of non-Debye type multiple relaxation mechanisms. Dielectric properties of the sample were also investigated in the temperature range 273–423 K. At higher frequencies reduction in dielectric loss was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W. González, R. Cardona, D.A.L. Téllez, J. Roa-Rojas, Crystallographic and electronic structure of the Sr3Sb2CoO9 triple perovskite. J. Phys. Conf. Ser. IOP Publ. 480, 012022 (2014)

    Article  Google Scholar 

  2. H. Wei, Y. Chen, G. Huo, H. Zhang, J. Ma, Crystal structure, infrared spectroscopic characterization and electrical property of double perovskite Sr2CoSbO6. Physica B Condens. Matter 405, 1369–1373 (2010)

    Article  ADS  Google Scholar 

  3. V. Primo-Martin, M. Jansen, Synthesis, structure, and physical properties of cobalt perovskites: Sr3CoSb2O9 and Sr2CoSbO6−δ. J. Solid State Chem. 157, 76–85 (2001)

    Article  ADS  Google Scholar 

  4. F.M. Casallas, E. Vera-Lópeza, D.A.L. Téllez, D.E.S. Mesa, J. Roa-Rojas, Magnetic feature, compositional and structural analysis of the La2SrFe2CoO9 complex perovskite. J. Phys. Conf. Ser. IOP Publ. 480, 012034 (2014)

    Article  Google Scholar 

  5. Md.M. Hoque, A. Dutta, S. Kumar, T.P. Sinha, Structural and dielectric properties of Sr3(MgTa2)O9 and Sr3(ZnTa2)O9. Physica B 468, 85–95 (2015)

    Article  ADS  Google Scholar 

  6. V. Ting, Y. Liu, R.L. Withers, L. Norén, An electron diffraction and bond valence sum study of the space group symmetries and structures of the photocatalytic 1: 2 B site ordered A3CoNb2O9 perovskites (A= Ca2+, Sr2+, Ba2+). J. Solid State Chem. 177, 2295–2304 (2004)

    Article  ADS  Google Scholar 

  7. V. Ting, Y. Liu, L. Norén, R.L. Withers, D.J. Goossens, M. James, C. Ferraris, A structure, conductivity and dielectric properties investigation of A3CoNb2O9 (A= Ca2+, Sr2+, Ba2+) triple perovskites. J. Solid State Chem. 177, 4428–4442 (2004)

    Article  ADS  Google Scholar 

  8. J. Yin, Z. Zou, J. Ye, A novel series of the new visible-light-driven photocatalysts MCo1/3Nb2/3O3 (M= Ca, Sr, and Ba) with special electronic structures. J. Phys. Chem. B 107, 4936–4941 (2003)

    Article  Google Scholar 

  9. G. Blasse, New compounds with perovskite-like structures. J. Inorg. Nucl. Chem. 27, 993–1003 (1965)

    Article  Google Scholar 

  10. Y. Pu, Z. Dong, P. Zhang, Y. Wu, J. Zhao, Y. Luo, Dielectric, complex impedance and electrical conductivity studies of the multiferroic Sr2FeSi2O7-crystallized glass-ceramics. J. Alloys Compd. 672, 64–71 (2016)

    Article  Google Scholar 

  11. S.T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, S.K. Deshpande, M.V. Murugendrappa, B. Angadi, Impedance spectroscopy studies on PbFe0.5Nb0.5O3–BiFeO3 multiferroic solid solution. Ceram. Int. 43, 16684–16692 (2017)

    Article  Google Scholar 

  12. M.B. Hossen, A.K.M. Akther Hossain, Complex impedance and electric modulus studies of magnetic ceramic Ni0.27Cu0.10Zn0.63Fe2O4. J. Adv. Ceram. 4, 217–225 (2015)

    Article  Google Scholar 

  13. B.B. Mohanty, P.S. Sahoo, M.P.K. Sahoo, R.N.P. Choudhary, Impedance spectroscopy of Ba5GdTi3V7O30. J. Mod. Phys. 3, 357–361 (2012)

    Article  Google Scholar 

  14. R. Pattanayak, S. Panigrahi, T. Dash, R. Muduli, D. Behera, Electric transport properties study of bulk BaFe12O19 by complex impedance spectroscopy. Physica B Condens. Matter 474, 57–63 (2015)

    Article  ADS  Google Scholar 

  15. M. Younas, L.L. Zou, M. Nadeem, S.CSu. Naeem-ur-Rehman, Z.L. Wang, W. Anwand, A. Wagner, J.H. Hao, C.W. Leung, R. Lortz, F.C.C. Ling, Impedance analysis of secondary phases in a Co-implanted ZnO single crystal. Phys. Chem. Chem. Phys. 16, 16030–16038 (2014)

    Article  Google Scholar 

  16. B.P. Das, P.K. Mahapatra, R.N.P. Choudhary, Impedance spectroscopy analysis of (Pb0.93Gd0.07)(Sn0.45Ti0.55)0.9825O3 ferroelectrics. Ind. J. Eng. Mater. Sci. 15, 152–156 (2008)

    Google Scholar 

  17. I. Ahmad, M.J. Akhtar, M.M. Hasan, Impedance spectroscopic investigation of electro active regions, conduction mechanism and origin of colossal dielectric constant in Nd1−xSrxFeO3 (0.1≤ x≤ 0.5). Mater. Res. Bull. 60, 474–484 (2014)

    Article  Google Scholar 

  18. K.L. Routray, D. Behera, Structural and dielectric properties of Bismuth doped cobalt nano ferrites prepared by sol-gel auto combustion method. IOP Conf. Ser: Mater. Sci. Eng. 178, 012007 (2017)

    Article  Google Scholar 

  19. A.K. Roy, K. Prasad, A. Prasad, Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 7, 81–91 (2013)

    Article  Google Scholar 

  20. I. Ahmad, M.J. Akhtar, M. Younas, M. Siddique, M.M. Hasan, Small polaronic hole hopping mechanism and Maxwell-Wagner relaxation in NdFeO3. J. Appl. Phys. 112, 074105 (2012)

    Article  ADS  Google Scholar 

  21. B. Ghosh, A. Dutta, K. Brajesh, T.P. Sinha, Dielectric relaxation in double-perovskite Ca2GdTaO6. Indian J. Pure Appl. Phys. 53, 125–133 (2015)

    Google Scholar 

  22. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M.M. Hassan, Origin of colossal dielectric response in LaFeO3. Acta Mater. 59, 1338–1345 (2011)

    Article  ADS  Google Scholar 

  23. I. Ahmad, M.J. Akhtar, M. Younas, Effects of temperature on conduction mechanism, ac electrical and dielectric properties of NdFe0.9Ni0.1O3 by employing impedance spectroscopy. J. Solid State Electr. 21, 3093–3101 (2017)

    Article  Google Scholar 

  24. S.K. Hasanain, M. Nadeem, W.H. Shah, M.J. Akhtar, M.M. Hasan, Effects of iron doping on the transport and magnetic behavior in La0.65Ca0.35Mn1-yFeyO3. J. Phys. Condens. Matter 12, 9007 (2000)

    Article  ADS  Google Scholar 

  25. V. Thakur, A. Singh, A.W. Awasthi, L. Singh, Temperature dependent electrical transport characteristics of BaTiO3 modified lithium borate glasses. AIP Adv. 5, 087110 (2015)

    Article  ADS  Google Scholar 

  26. S. Thakur, R. Rai, I. Bdikin, M.A. Valente, Impedance and modulus spectroscopy characterization of Tb modified Bi0.8A0.1Pb0.1Fe0.9Ti0.1O3 ceramics. Mat. Res. 19, 1–8 (2016)

    Article  Google Scholar 

  27. A.S. Alaeddin, P. Poopalan, Impedance/modulus analysis of sol-gel BaxSr1−xTiO3 thin films. J. Korean Phys. Soc. 57, 1449–1455 (2010)

    Article  Google Scholar 

  28. P. Kumar, A.K. Sharma, B.P. Singh, T.P. Sinha, N.K. Singh, Dielectric relaxation in complex perovskite oxide Sr(Gd0.5Nb0.5)O3. Mater. Sci. Appl. 3, 369–376 (2012)

    Google Scholar 

  29. U. Ahmadu, S. Tomas, S.A. Jonah, A.O. Musa, N. Rabiu, Equivalent circuit models and analysis of impedance spectra of solid electrolyte Na0.25Li0.75Zr2(PO4)3. Adv. Mater. Lett. 4, 185–195 (2013)

    Article  Google Scholar 

  30. A.K. Pradhan, P.R. Mandal, K. Bera, S. Saha, T.K. Nath, The effect of Mo doping on the structural and dielectric properties of Co–Zn ferrite. Physica B Condens. Matter 525, 1–6 (2017)

    Article  ADS  Google Scholar 

  31. J. Bashir, R. Shaheen, Structural and complex AC impedance spectroscopic studies of A2CoNbO6 (A= Sr, Ba) ordered double perovskites. Solid State Sci. 13, 993–999 (2011)

    Article  ADS  Google Scholar 

  32. A.K. Pradhan, S. Saha, T.K. Nath, AC and DC electrical conductivity, dielectric and magnetic properties of Co0.65Zn0.35Fe2−xMoxO4 (x= 0.0, 0.1 and 0.2) ferrites. Appl. Phys. A 123, 715 (2017)

    Article  ADS  Google Scholar 

  33. A. Dhahri, E. Dhahri, E.K. Hlil, Electrical conductivity and dielectric behavior of nanocrystalline La0.6Gd0.1Sr0.3Mn0.75Si0.25O3. RSC Adv. 8, 9103–9111 (2018)

    Article  ADS  Google Scholar 

  34. L. Biswal, P.R. Das, B. Behera, Frequency dependent electrical properties of Na2Pb2R2W2Ti4Nb4O30 (R= Nd, Sm) ceramics. J. Adv. Ceram. 3, 215–223 (2014)

    Article  Google Scholar 

  35. A. Singh, B. Deka, S. Ravi, D. Pamu, Impedance spectroscopy and ac conductivity mechanism in Sm doped Yttrium Iron Garnet. Ceram. Int. 43, 10468–10477 (2017)

    Article  Google Scholar 

  36. A. Oueslati, Li+ ion conductivity and transport properties of LiYP2O7 compound. Ionics 23, 857–867 (2017)

    Article  Google Scholar 

  37. T.S. Velayutham, W.H. Abd Majid, W.C. Gan, A. Khorsand Zak, S.N. Gan, Theoretical and experimental approach on dielectric properties of ZnO nanoparticles and polyurethane/ZnO nanocomposites. J. Appl. Phys. 112, 054106 (2012)

    Article  ADS  Google Scholar 

  38. N. Mehta, D. Kumar, S. Kumar, A. Kumar, Applicability of CBH model in the ac conduction study of glassy Se100-xInx alloys. J. Optoelectron. Adv. Mat. 7, 2971 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syeda Arooj Fatima.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, S.A., Shaheen, R. & Shahzad, K. Study of electrical and dielectric properties of Sr3CoSb2O9 perovskite by impedance spectroscopy. Appl. Phys. A 127, 466 (2021). https://doi.org/10.1007/s00339-021-04597-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04597-4

Keywords

Navigation