Skip to main content
Log in

Effect of annealing temperature on a highly sensitive nickel oxide-based LPG sensor operated at room temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, nanostructured nickel oxide (NiO) powder has been synthesized using the sol–gel method and is annealed at different temperatures to study the impact of annealing temperature on its structural, optical, morphological, and LPG sensing properties. The obtained powder was analyzed by several characterization techniques such as field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–Visible spectroscopy (UV–Vis), particle analyzer, and Fourier-transform infrared spectroscopy. XRD patterns show that NiO nanoparticles have a cubic unit cell structure. The average crystallite size for each of the samples was calculated to be 27–77 nm using the Debye–Scherrer formula and Williamson-Hall uniform deformation model plot. FESEM images revealed the mesoporous morphology of prepared NiO nanoparticles and found that the particle size increases with an increase in annealing temperature. The UV–Vis absorption spectrum shows that the energy band gap decreases with an increase in annealing temperature for NiO nanoparticles. Liquefied petroleum gas (LPG) sensing properties of the prepared pellets were also examined at room temperature (300 K) in the range of 0.5–2.0 vol% concentration of LPG. The gas sensing response of the NiO:500 sample is 244.4% which is the highest among all the samples due to the combined effect of nanocrystal defects and specific surface area. The sensing response of the synthesized material increased significantly as the concentration of the test gas rose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References:

  1. E.S. Snow, F.K. Perkins, J.A. Robinson, Chem. Soc. Rev. 35(9), 790–798 (2006). https://doi.org/10.1039/B515473C

    Article  Google Scholar 

  2. J. Wang, F. Yang, X. Wei, Y. Zhang, L. Wei, J. Zhang, Q. Tang, B. Guo, Xu. Lei, Phys. Chem. Chem. Phys. 16(31), 16711–16718 (2014). https://doi.org/10.1039/C4CP01122H

    Article  Google Scholar 

  3. L. Francioso, A.M. Taurino, A. Forleo, P. Siciliano, Sens. Actuators. B. Chem 130(1), 70–76 (2008). https://doi.org/10.1016/j.snb.2007.07.074

    Article  Google Scholar 

  4. H.R. Kim, A. Haensch, I.I.-D. Kim, N. Barsan, U. Weimar, J.H. Lee, Adv. Func. Mater. 21(23), 4456–4463 (2011). https://doi.org/10.1002/adfm.201101154

    Article  Google Scholar 

  5. Y. Zhang, Z. Zheng, F. Yang, Ind. Eng. Chem. Res. 49(8), 3539–3543 (2010). https://doi.org/10.1021/ie100197b

    Article  Google Scholar 

  6. J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, Y. Zhang, J. Mater. Chem. 22(37), 20038–20047 (2012). https://doi.org/10.1039/C2JM34192A

    Article  Google Scholar 

  7. K. Kumar, U. Kumar, M. Singh, B.C. Yadav, J. Mater. Sci.: Mater. Electron. 30(14), 13013–13023 (2019). https://doi.org/10.1007/s10854-019-01663-9

    Article  Google Scholar 

  8. S. Singh, U. Kumar, B.C. Yadav, K. Kumar, R. Tripathi, K. Singh, Results. Phys 15, 102772 (2019). https://doi.org/10.1016/j.rinp.2019.1027

    Article  Google Scholar 

  9. K. Kumar, A. Singh, U. Kumar, R.K. Tripathi, B.C. Yadav, J. Mater. Sci.: Mater. Electron. 31, 10836–10845 (2020). https://doi.org/10.1007/s10854-020-03635-w

    Article  Google Scholar 

  10. D.-L. Sun, B.-W. Zhao, Jing-Bing. Liu et al., Ionics (2017). https://doi.org/10.1007/s11581-017-1974-4

    Article  Google Scholar 

  11. J.G. Cook, F.P. Koffyberg, Sol. Energy. Mater 10(1), 55–67 (1984). https://doi.org/10.1016/0165-1633(84)90008-X

    Article  ADS  Google Scholar 

  12. J.C.N. Botejue, A.C.C. Tseung, J. Electrochem. Soc. 132, 2957 (1985)

    Article  ADS  Google Scholar 

  13. M. Bonomo, D. Dini, F. Decker, Front. Chem. 6, 601 (2018). https://doi.org/10.3389/fchem.2018.00601

    Article  ADS  Google Scholar 

  14. A.K. Rai, L.T. Anh, C.J. Park, J. Kimm, Ceram. Int 39(6), 6611–6618 (2013). https://doi.org/10.1016/j.ceramint.2013.01.097

    Article  Google Scholar 

  15. D. V. Ahire, G. E. Patil, G. H. Jain and V. B. Gaikwad, Sixth International Conference on Sensing Technology (ICST) Kolkata pp. 136–141 (2012) https://doi.org/10.1109/ICSensT.2012.6461656

  16. Z.M. Khoshhesab, M. Sarfaraz, Synth. Reactivity. Inorg, Metal-Org, Nano-Metal. Chem 40(9), 700–703 (2010). https://doi.org/10.1080/15533174.2010.509710

    Article  Google Scholar 

  17. N.N. MohdZorkipli, N.H.M. Kaus, A.A. Mohamad, Procedia. Chemistry 19, 626–631 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  Google Scholar 

  18. L.G. Teoh, K.D. Li, Mater. Trans. 53(12), 2135–2140 (2012). https://doi.org/10.2320/matertrans.M2012244

    Article  Google Scholar 

  19. P.K. Singh, N. Singh, M. Singh et al., Appl. Phys. A 126, 321 (2020). https://doi.org/10.1007/s00339-020-3439-2

    Article  ADS  Google Scholar 

  20. B. Chaitongrat, S. Chaisitsak, J. Nanomaterials (2018). https://doi.org/10.1155/2018/9236450

    Article  Google Scholar 

  21. K.V. Gurav, S.W. Shin, U.M. Patil, P.R. Deshmukh, M.P. Suryawanshi, G.L. Agawane, S.M. Pawar, P.S. Patil, J.Y. Lee, C.D. Lokhande, J.H. Kim, Sens. Actuators, B Chem. 190, 408–413 (2014). https://doi.org/10.1016/j.snb.2013.08.064

    Article  Google Scholar 

  22. S.S. Barkade, D.V. Pinjari, U.T. Nakate, A.K. Singh, P.R. Gogate, J.B. Naik, S.H. Sonawane, A.B. Pandit, Chem. Eng. Process. 74, 115–223 (2013). https://doi.org/10.1016/j.cep.2013.09.005

    Article  Google Scholar 

  23. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Sens. Actuators B: Chem 241, 1170–1178 (2017). https://doi.org/10.1016/j.snb.2016.10.018

    Article  Google Scholar 

  24. H.A. Dehkordi, K. Dastafkan, A. Moshaii et al., J. Mater. Sci: Mater. Electron 26, 3134–3142 (2015). https://doi.org/10.1007/s10854-015-2808-7

    Article  Google Scholar 

  25. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid. State. Sci. 13(1), 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  ADS  Google Scholar 

  26. K.D. Roger, P. Daniels, Bio. Mater 23, 2577–2585 (2002). https://doi.org/10.1016/s0142-9612(01)00395-7

    Article  Google Scholar 

  27. C. Amutha, S. Thanikaikarasan, V. Ramadas, S.A. Bahadur, B. Natarajan, R. Kalyani, Optik 127(10), 4281–4286 (2016). https://doi.org/10.1016/j.ijleo.2016.01.124

    Article  ADS  Google Scholar 

  28. P. Gupta, N.K. Pandey, K. Kuldeep, B.C. Yadav, Sens. Actuators. A: Phys 319, 112484 (2021). https://doi.org/10.1016/j.sna.2020.112484

    Article  Google Scholar 

  29. K. Venkateswarlu, A.C. Bose, N. Rameshbabu, Physica B 405(20), 4256–4261 (2010). https://doi.org/10.1016/j.physb.2010.07.020

    Article  ADS  Google Scholar 

  30. S. Sivasankaran, K. Sivaprasad, R. Narayanasamy, P.V. Satyanarayana, Mater. Charact. 62(7), 661–672 (2011). https://doi.org/10.1016/j.matchar.2011.04.017

    Article  Google Scholar 

  31. M. Dhongal, A. El-Denglawey, A.F. Elhady, A.A. Abuelwafa, Curr. Appl. Phys 12(5), 1334–1339 (2012). https://doi.org/10.1016/j.cap.2012.03.022

    Article  ADS  Google Scholar 

  32. S. Kumar, Z.H. Khan, M.A.M. Khan, M. Husain, Curr. Appl. Phys 5(6), 561–566 (2005). https://doi.org/10.1016/j.cap.2004.07.001

    Article  ADS  Google Scholar 

  33. R. Kumar, R. Das, M. Gupta, V. Ganesan, Superlattices Microstruct. 59, 29 (2013). https://doi.org/10.1016/j.spmi.2013.04.002

    Article  ADS  Google Scholar 

  34. M. Saleem, L. Fang, H.B. Ruan, F. Wu, Q.L. Huang, C.L. Xu, C.Y. Kong, Int J. Phys Sci 7(23), 2971 (2012). https://doi.org/10.5897/IJPS12.219

    Article  Google Scholar 

  35. S.S. Juliet, S. Ramalingom, C. Ravidhas, A.M.E. Raj, IOSR-JAP 9, 32–39 (2017). https://doi.org/10.9790/4861-0904043239

    Article  Google Scholar 

  36. B.C. Yadav, S.R. Sabhajeet, R.K. Sonkar, J Mater Sci Res JMSR 108 (2018). https://doi.org/10.29011/JMSR-108/100008

  37. F. Davar, Z. Fereshteh, M. Salavati-Niasari, J. Alloys. Compd 476, 797–801 (2009). https://doi.org/10.1016/j.jallcom.2008.09.121

    Article  Google Scholar 

  38. M. Naseem Siddique, Ateeq Ahmed, T. Ali, and P. Tripathi, AIP Conference Proceedings 1953, 030027 (2018) DOI: https://doi.org/10.1063/1.5032362

  39. R.O. Yathisha, Y. ArthobaNayaka, J. Mater. Sci (2018). https://doi.org/10.1007/s10853-017-1496-5

    Article  Google Scholar 

  40. D.R. Miller, S.A. Akbar, P.A. Morris, D.R. Miller, S.A. Akbar, P.A. Morris, Sens. Actuators. B: Chem 204, 250–272 (2014). https://doi.org/10.1016/j.snb.2014.07.074

    Article  Google Scholar 

  41. H.J. Kim, J.H. Lee, Sens. Actuators B: Chem 192, 607–627 (2014). https://doi.org/10.1016/j.snb.2013.11.005

    Article  Google Scholar 

  42. P. Chou et al., IEEE Sens J 15(7), 3711–3715 (2015). https://doi.org/10.1109/JSEN.2015.2391286

    Article  ADS  Google Scholar 

  43. P. Gupta, S. Maurya, N.K. Pandey, V. Verma, J. Mater. Sci: Mater. Electron (2021). https://doi.org/10.1007/s10854-020-05099-4

    Article  Google Scholar 

  44. N. Barsan, U. Weimar, J. Electroceram. 7, 143–167 (2001). https://doi.org/10.1023/A:1014405811371

    Article  Google Scholar 

  45. P. Gupta, S. Maurya, K.P. Narendra, V. Vernica, Nanosci. Nanotech-Asia 10, 1 (2020). https://doi.org/10.2174/2210681210999200718005402

    Article  Google Scholar 

  46. R.W.J. Scott, S.M. Yang, G. Chabanis, N. Coombs, D.E. Williams, G.A. Ozin, Adv. Mater. 13, 1468–1472 (2001). https://doi.org/10.1002/1521-4095(200110)13:19

    Article  Google Scholar 

  47. E. Wongrat, P. Pimpang, S. Choopun, Appl. Surf. Sci. 256, 968–971 (2009). https://doi.org/10.1016/j.apsusc.2009.02.046

    Article  ADS  Google Scholar 

  48. Fu. Qingjie, M. Ai, Yi. Duan, Lu. Lingmei, X. Tian, D. Sun, Xu. Yanyan, Y. Sun, RSC. Adv. 7(82), 52312–52320 (2017). https://doi.org/10.1039/C7RA10730G

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors appreciatively acknowledge to Department of Physics, University of Lucknow for providing XRD facility. MCN for this manuscript is IU/R&D/2020-MCN000988.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priya Gupta.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Kumar, K., Pandey, N.K. et al. Effect of annealing temperature on a highly sensitive nickel oxide-based LPG sensor operated at room temperature. Appl. Phys. A 127, 289 (2021). https://doi.org/10.1007/s00339-021-04444-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04444-6

Keywords

Navigation