Skip to main content
Log in

High-sensitivity Hg2+ sensor based on the optical properties of silver nanoparticles synthesized with aqueous leaf extract of Mimusops coriacea

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the presented manuscript, spherical silver nanoparticles (AgNPs) which were prepared via green chemical method in a single step take only a few minutes to be ready as a Hg2+ ions detector based on the plasmon band changes. The AgNPs were obtained with the aqueous extract of Mimusops coriacea leaves. The components of the extract as tannins and polyphenolic compounds were responsible for the reduction in metal ions and the particles encapsulation. The AgNPs were characterized by UV–Vis spectroscopy, fluorescence, Fourier transform infrared, dynamic light scattering analysis and transmission electron microscopy. The AgNps presented an average diameter of 15 nm and a zeta potential value of ~ − 28 mV. They were monodispersed and stable for up to 180 days. AgNPs are used as a Hg2+ sensor with high sensitivity and selectivity. The fast, simple and low-cost method is based on changes in the AgNP surface plasmon resonance band (λ ≈ 410 nm) with LOD 6.5 ng/mL (32.5 nM), without functionalization of the AgNPs. The low LOD demonstrates its potential for Hg2+ quantification in environmental samples such as fish, soil, and effluent discharge.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Contact the authors for information on data availability.

References

  1. UNEP (2019) Minamata Convention on Mercury. http://www.mercuryconvention.org/Convention/Text/tabid/3426/language/en-US/Default.aspx. Accessed 10 August 2020

  2. BRASIL (2013) Diagnóstico Preliminar sobre o Mercúrio no Brasil. Ministério do Meio Ambiente

  3. Farias L.A (2006) Avaliação do Conteúdo de Mercúrio, Metilmercúrio e Outros Elementos de Interesse em Peixes e em Amostras de Cabelos e Dietas de Pré-Escolares da Região Amazônica. Thesis, Universidade Federal de São Paulo

  4. WAD J,(2010) Especiação, Quantificação, Distribuição e Transporte de Mercúrio em Solos Contaminados do Município de Descoberto, Belo Horizonte. Dissertation, Universidade Federal de Minas Gerais

  5. F. Chai, C. Wang, T. Wang, Z. Ma, Z. Su, L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 21(2), 025501 (2009). https://doi.org/10.1088/0957-4484/21/2/025501

    Article  ADS  Google Scholar 

  6. J. Duan, H. Yin, R. Wei, W. Wang, Facile colorimetric detection of Hg2+ based on anti-aggregation of silver nanoparticles. Biosens. Bioelectron. 57, 139–142 (2014). https://doi.org/10.1016/j.bios.2014.02.007

    Article  Google Scholar 

  7. L. Li, B. Li, Y. Qi, Y. Jin, Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe. Anal. Bioanal. Chem. 393(8), 2051–2057 (2009). https://doi.org/10.1007/s00216-009-2640-0

    Article  Google Scholar 

  8. G. Sener, L. Uzun, A. Denizli, Lysine-promoted colorimetric response of gold nanoparticles: a simple assay for ultrasensitive mercury(II) detection. Anal. Chem. 86(1), 514–520 (2014). https://doi.org/10.1021/ac403447a

    Article  Google Scholar 

  9. P. Sharma et al., Thiol terminated chitosan capped silver nanoparticles for sensitive and selective detection of mercury (II) ions in water. Sens. Actuators B: Chem. 268, 310–318 (2018). https://doi.org/10.1016/j.snb.2018.04.121

    Article  Google Scholar 

  10. Albernaz VL (2014) Síntese verde de nanopartículas de prata com extrato aquoso de folhas de Brosimum gaudichaudii, caracterização fisicoquímica, morfológica e suas aplicações no desenvolvimento de um nanobiossensor eletroquímico. Dissertation, Universidade de Brasilia

  11. S. Iravani, Green synthesis of metal nanoparticles using plants. Green Chem. 13(20), 2638 (2011). https://doi.org/10.1039/C1GC15386B

    Article  Google Scholar 

  12. A. Mishra et al., Microbial synthesis of gold nanoparticles using the fungus Penicillium brevicompactum and their cytotoxic effects against mouse mayo blast cancer C2C12 cells. Appl. Microbiol. Biotechnol. 92(3), 617–630 (2011). https://doi.org/10.1007/s00253-011-3556-0

    Article  Google Scholar 

  13. V.K. Sharma, R.A. Yngard, Y. Lin, Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Coll. Interface. Sci. 145, 83–96 (2009). https://doi.org/10.1016/j.cis.2008.09.002

    Article  Google Scholar 

  14. H. Itoh, K. Naka, Y. Chujo, Synthesis of gold nanoparticles modified with ionic liquid based on the imidazolium cation. J. Am. Chem. Soc. 126(10), 3026–3027 (2004). https://doi.org/10.1021/ja039895g

    Article  Google Scholar 

  15. P. Singh, K. Kumari, A. Katyal, R. Kalra, R. Chandra, Synthesis and characterization of silver and gold nanoparticles in ionic liquid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 73(1), 218–220 (2009). https://doi.org/10.1016/j.saa.2009.02.007

    Article  ADS  Google Scholar 

  16. R. Lu, D. Yang, D. Cui, Z. Wang, L. Guo, Egg white-mediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomed. 7, 2101–2107 (2012). https://doi.org/10.2147/IJN.S29762

    Article  Google Scholar 

  17. R.A. De Matos, L.C. Courrol, Saliva and light as templates for the green synthesis of silver nanoparticles. Coll. Surf.A Physicochem. Eng. Asp. 441, 539–543 (2014). https://doi.org/10.1016/j.colsurfa.2013.10.009

    Article  Google Scholar 

  18. J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19(4), 1357–1361 (2003). https://doi.org/10.1021/la020835i

    Article  Google Scholar 

  19. A.K. Mittal, Y. Chisti, U.C. Banerjee, Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013). https://doi.org/10.1016/j.biotechadv.2013.01.003

    Article  Google Scholar 

  20. P. Rauwel, S. Kuunal, S. Ferdov, E. Rauwel, A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/682749

    Article  Google Scholar 

  21. J. Park, S.-H. Cha, S. Cho, Y. Park, Green synthesis of gold and silver nanoparticles using gallic acid: catalytic activity and conversion yield toward the 4-nitrophenol reduction reaction. J. Nanopart. Res. 18(6), 166 (2016). https://doi.org/10.1007/s11051-016-3466-2

    Article  ADS  Google Scholar 

  22. C.R.B. Lopes, L.C. Courrol, Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. J. Lumin. 199, 183–187 (2018). https://doi.org/10.1016/j.jlumin.2018.03.030

    Article  Google Scholar 

  23. D. Wang, Q. Gai, R. Huang, X. Zheng, Label-free electrochemiluminescence assay for aqueous Hg2+ through oligonucleotide mediated assembly of gold nanoparticles. Biosens. Bioelectron. 98, 134–139 (2017). https://doi.org/10.1016/j.bios.2017.06.054

    Article  Google Scholar 

  24. Y. Liu et al., Turn-on fluoresence sensor for Hg2+ in food based on fret between aptamers-functionalized upconversion nanoparticles and gold nanoparticles. J. Agric. Food Chem. 66(24), 6188–6195 (2018). https://doi.org/10.1021/acs.jafc.8b00546

    Article  Google Scholar 

  25. S. Jia, C. Bian, J. Sun, J. Tong, X. Shanhong, A wavelength-modulated localized surface plasmon resonance (LSPR) optical fiber sensor for sensitive detection of mercury(II) ion by gold nanoparticles-DNA conjugates. Biosens Bioelectron 114, 15–21 (2018). https://doi.org/10.1016/j.bios.2018.05.004

    Article  Google Scholar 

  26. A.N. Vijayan, L. Zhiming, Z. Haohan, P. Zhang, Nicking enzyme-assisted signal-amplifiable Hg2+ detection using upconversion nanoparticles. Anal. Chim. Acta 1072, 75–80 (2019). https://doi.org/10.1016/j.aca.2019.05.001

    Article  Google Scholar 

  27. C.O. Amorim et al., Ultra sensitive quantification of Hg2+ sorption by functionalized nanoparticles using radioactive tracker spectroscopy. Microchem. J. 138, 418–423 (2018). https://doi.org/10.1016/j.microc.2018.01.039

    Article  Google Scholar 

  28. P. Preposito et al., Bifunctionalized silver nanoparticles as hg2+ plasmonic sensor in water: synthesis, characterizations, and ecosafety. Nanomaterials 9(10), 1353 (2019). https://doi.org/10.3390/nano9101353

    Article  Google Scholar 

  29. S. Ghosh, S. Maji, A. Mondal, Study of selective sensing of Hg2+ ions by green synthesized silver nanoparticles suppressing the effect of Fe3+ ions. Colloids Surf., A 555, 324–331 (2018). https://doi.org/10.1016/j.colsurfa.2018.07.012

    Article  Google Scholar 

  30. L. Currie, Detection and quantification limits: origins and historical overview. Anal. Chim. Acta 391, 127–134 (1999). https://doi.org/10.1016/S0003-2670(99)00105-1

    Article  Google Scholar 

  31. E. Bulut, Rapid, facile synthesis of silver nanostructure using hydrolyzable tannin. Ind. Eng. Chem. Res. (2009). https://doi.org/10.1021/ie801779f

    Article  Google Scholar 

  32. K.J. Rao, S. Paria, Green synthesis of silver nanoparticles from aqueous Aegle marmelos leaf extract. Mater. Res. Bull. 48(2), 628–634 (2013). https://doi.org/10.1016/j.materresbull.2012.11.035

    Article  Google Scholar 

  33. Z. Mashwani, T. Khan, M.A. Khan, A. Nadhman, Synthesis in plants and plant extracts of silver nanoparticles with potent antimicrobial properties: current status and future prospects. Appl. Microbiol. Biotechnol. 99, 9923–9934 (2015). https://doi.org/10.1007/s00253-015-6987-1

    Article  Google Scholar 

  34. P. Prakash, P. Gnanaprakasam, R. Emmanuel, S. Arokiyaraj, M. Saravanan, Green synthesis of silver nanoparticles from leaf extract of Mimusops elengi, Linn. for enhanced antibacterial activity against multi drug resistant clinical isolates. Coll. Surf. B: Biointerf. 108, 255–259 (2013). https://doi.org/10.1016/j.colsurfb.2013.03.017

    Article  Google Scholar 

  35. S. Satish, M.P. Raghavendra, D.C. Mohana, K.A. Raveesha, Antifungal activity of a known medicinal plant Mimusops elengi L against grain moulds. J Agric Technol 4(1), 151–165 (2008)

    Google Scholar 

  36. S. Rajeshkumar, L.V. Bharath, Mechanism of plant-mediated synthesis of silver nanoparticles – a review on biomolecules involved, characterization and antibacterial activity. Chem. Biol. Interact. 273, 219–227 (2017). https://doi.org/10.1016/j.cbi.2017.06.019

    Article  Google Scholar 

  37. R. Veerasamy et al., Biosynthesis of silver nanoparticles using mangosteen leaf extract and evaluation of their antimicrobial activities. J. Saudi Chem. Soc. 15(2), 113–120 (2011). https://doi.org/10.1016/j.jscs.2010.06.004

    Article  Google Scholar 

  38. P. Khoroshyy, D. Bína, Z. Gardian, R. Litvín, J. Alster, J. Pšenčík, Quenching of chlorophyll triplet states by carotenoids in algal light-harvesting complexes related to fucoxanthin-chlorophyll protein. Photosynth. Res. 135(1–3), 213–225 (2018). https://doi.org/10.1007/s11120-017-0416-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES for financial support and Multiuser Facilities Central at UFABC for the experimental support and São Paulo Research Foundation (FAPESP) for Grant #2017/23686-6.

Funding

This research was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) and Grant #2017/23686–6 of São Paulo Research Foundation (FAPESP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Regina Borges Lopes.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, C.R.B., Junior, D.S., Silva, F.R.d. et al. High-sensitivity Hg2+ sensor based on the optical properties of silver nanoparticles synthesized with aqueous leaf extract of Mimusops coriacea. Appl. Phys. A 127, 244 (2021). https://doi.org/10.1007/s00339-021-04391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04391-2

Keywords

Navigation