Skip to main content

Advertisement

Log in

Synthesis of silver nano-butterfly park by using laser ablation of aqueous salt for gas sensing application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this report, silver nanoparticles (Ag-NPs) were prepared by pulsed laser ablation of the silver nitrate salt solution using Nd:YAG laser. Trisodium citrate (TSC) is used as a stabilizing/reducing agent for nanoparticles. Under different laser ablation durations, the morphology of nanoparticles changed. Nanoparticles showed the average size ranging from 5 to 31 nm for 20–80 min of ablation. The theoretical and experimental estimation of the particle sizes is done. Butterfly-shaped silver nanoparticles have been tested for the room-temperature clad-modified fiber optic gas sensors sensitivity with ammonia and ethanol gas. The clad-modified optical fiber sensor exhibits distinct linear variation in the spectral peak intensity with the ammonia concentration (0–500 ppm). The characteristics of the gas sensors when exposed to ethanol and ammonia gases were used for studying the sensor selectivity. The results exhibited good sensor response and selectivity for ammonia with sensitivity of 64 counts/ppm and sensitivity percentage of 27%, whereas for ethanol, sensitivity of 9.5 counts/ppm and sensitivity percentage of only 4% were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.M. Tilaki, A. Irajizad, S.M. Mahdavi, Appl Phys A Mater Sci Process 84, 215 (2006)

    Article  ADS  Google Scholar 

  2. U. Kreibig, J Phys F Met Phys 4, 999 (1974)

    Article  ADS  Google Scholar 

  3. C. Vanlalveni, S. Lallianrawna, A. Biswas, M. Selvaraj, RSC Adv 11(5), 2804–2837 (2021)

    Article  Google Scholar 

  4. L. Xu, Y.Y. Wang, J. Huang, C.Y. Chen, Z.X. Wang, H. Xie, Theranostics 10, 8996 (2020)

    Article  Google Scholar 

  5. F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, H. Sawabe, J Phys Chem B 104, 8333 (2002)

    Article  Google Scholar 

  6. J.P. Wilcoxon, J.E. Martin, P. Provencio, Langmuir 16, 9912 (2000)

    Article  Google Scholar 

  7. K.M.M.A. El-nour, A. Al-warthan, R.A.A. Ammar, Arabian J Chem 3(3), 135–140 (2010)

    Article  Google Scholar 

  8. M. Rafique, I. Sadaf, M.S. Rafique, M.B. Tahir, Artif Cells Nanomed Biotechnol 45, 1272–1291 (2017)

    Article  Google Scholar 

  9. T. Thirugnanasambandan, K. Pal, A. Sidhu, M.A. Elkodous, H. Prasath, K. Kulasekarapandian, A. Ayeshamariam, J. Jeevanandam, Nano Struct Nano Objects 16, 224–233 (2018)

    Article  Google Scholar 

  10. K. Liu, S. Qu, X. Zhang, F. Tan, Z. Wang, Nanoscale Res Lett 8, 88 (2013)

    Article  ADS  Google Scholar 

  11. P. Pathak, E. Castillo-Orozco, R. Kumar, A. Kar, H.J. Cho, J Laser Appl 33, 12034 (2021)

    Article  Google Scholar 

  12. A. Desireddy, B.E. Conn, J. Guo, B. Yoon, R.N. Barnett, B.M. Monahan, K. Kirschbaum, W.P. Griffith, R.L. Whetten, U. Landman, T.P. Bigioni, Nature 501, 399 (2013)

    Article  ADS  Google Scholar 

  13. R.A. Hamouda, M.H. Hussein, R.A. Abo-elmagd, S.S. Bawazir, Sci Rep 9, 1 (2019)

    Article  Google Scholar 

  14. A.A. Menazea, Radiat Phys Chem 168, 108616 (2020)

    Article  Google Scholar 

  15. M.T. Swihart, Curr Opin Colloid Interface Sci 8, 127 (2003)

    Article  Google Scholar 

  16. H. Wang, X. Qiao, J. Chen, S. Ding, Coll Surf A Physicochem Eng Asp 256, 111 (2005)

    Article  Google Scholar 

  17. M. Brust, J. Fink, D.B.D.J. Schiffrina, C. Kielyb, J Chem Soc Chem Commun 16, 1655 (1995)

    Article  Google Scholar 

  18. N. Toshima, T. Yonezawa, New J Chem 22, 1179 (1998)

    Article  Google Scholar 

  19. X. Ji, X. Song, J. Li, Y. Bai, W. Yang, J Am Chem Soc 129(45), 13939–13948 (2007)

    Article  Google Scholar 

  20. J.P. Abid, A.W. Wark, P.F. Brevet, H.H. Girault, Chem Commun 7, 792 (2002)

    Article  Google Scholar 

  21. R. De Sun, T. Tsuji, Appl Surf Sci 348, 38 (2015)

    Article  ADS  Google Scholar 

  22. T. Adhikari, D. Pathak, T. Wagner, R. Jambor, U. Jabeen, M. Aamir, J.M. Nunzi, Opt Mater (Amst) 73, 70 (2017)

    Article  ADS  Google Scholar 

  23. D. Pathak, R.K. Bedi, D. Kaur, Surf Rev Lett 16, 917 (2009)

    Article  ADS  Google Scholar 

  24. D. Pathak, R.K. Bedi, A. Kaushal, D. Kaur, Int J Mod Phys B 24, 5379 (2010)

    Article  ADS  Google Scholar 

  25. D. Reyes-Contreras, M. Camacho-López, M.A. Camacho-López, S. Camacho-López, R.I. Rodríguez-Beltrán, M. Mayorga-Rojas, Opt Laser Technol 74, 48 (2015)

    Article  ADS  Google Scholar 

  26. D. Werner, A. Furube, T. Okamoto, S. Hashimoto, J Phys Chem C 115(17), 8503–8512 (2011)

    Article  Google Scholar 

  27. D. Werner, S. Hashimoto, J Phys Chem C 115, 5063 (2011)

    Article  Google Scholar 

  28. B.N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tünnermann, Appl Phys A Mater Sci Process 63, 109 (1996)

    Article  ADS  Google Scholar 

  29. B. Renganathan, D. Sastikumar, G. Gobi, N. Rajeswari Yogamalar, A. Chandra Bose, Opt Laser Technol 43, 1398 (2011)

    Article  ADS  Google Scholar 

  30. J.W. Rhim, L.F. Wang, Y. Lee, S.I. Hong, Carbohydr Polym 103, 456 (2014)

    Article  Google Scholar 

  31. M.A. Zakaria, A.A. Menazea, A.M. Mostafa, E.A. Al-Ashkar, Surf Interfaces 19, 100438 (2020)

    Article  Google Scholar 

  32. A. Guadagnini, S. Agnoli, D. Badocco, P. Pastore, D. Coral, M.B. Fernàndez van Raap, D. Forrer, V. Amendola, J Colloid Interface Sci 585, 267 (2021)

    Article  ADS  Google Scholar 

  33. T. Tsuji, Appl Surf Sci 202, 80 (2002)

    Article  ADS  Google Scholar 

  34. B. Renganathan, A.R. Ganesan, Opt Fiber Technol 20, 48 (2014)

    Article  ADS  Google Scholar 

  35. A. Kalai Priya, A. Sunny, B. Karthikeyan, D. Sastikumar, Opt Fiber Technol 58, 102304 (2020)

    Article  Google Scholar 

  36. D. Rithesh Raj, S. Prasanth, T.V. Vineeshkumar, C. Sudarsanakumar, Opt Commun 340, 86 (2015)

    Article  ADS  Google Scholar 

  37. L.R. Shobin, D. Sastikumar, S. Manivannan, Sensors Actuators A Phys 214, 74 (2014)

    Article  Google Scholar 

  38. S.P. Usha, S.K. Mishra, B.D. Gupta, Materials (Basel) 8, 2204 (2015)

    Article  ADS  Google Scholar 

  39. A.K. Mohamedkhair, Q.A. Drmosh, Z.H. Yamani, Front Mater 6, 1 (2019)

    Article  Google Scholar 

  40. T. Kavinkumar, S. Manivannan, Ceram Int 42, 1769 (2016)

    Article  Google Scholar 

  41. J. Belloni, M. Mostafavi, H. Remita, J. Marignier, M. Delcourt, New J Chem 22, 1239 (1998)

    Article  Google Scholar 

  42. C.L. Thomsen, D. Madsen, S.R. Keiding, J. Tho, O. Christiansen, C.L. Thomsen, D. Madsen, S.R. Keiding, J. Tho, J Chem Phys 110, 3453 (1999)

    Article  ADS  Google Scholar 

  43. M.J. Tommalieh, H.A. Ibrahium, N.S. Awwad, A.A. Menazea, J Mol Struct 1221, 128814 (2020)

    Article  Google Scholar 

  44. A.A. Menazea, J Mol Struct 1207, 127807 (2020)

    Article  Google Scholar 

  45. A.A. Menazea, M.K. Ahmed, J Mol Struct 1217, 128401 (2020)

    Article  Google Scholar 

  46. A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res Lett 7, 144 (2012)

    Article  ADS  Google Scholar 

  47. Y. Takeuchi, T. Ida, K. Kimura, J Phys Chem B 101, 1322 (1997)

    Article  Google Scholar 

  48. A.V. Simakin, V.V. Voronov, N.A. Kirichenko, G.A. Shafeev, Appl Phys A Mater Sci Process 79, 1127 (2004)

    Article  ADS  Google Scholar 

  49. R. Intartaglia, K. Bagga, F. Brandi, Opt Express 22, 3117 (2014)

    Article  ADS  Google Scholar 

  50. S. Link, C. Burda, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed, J Phys Chem A 103, 1165 (2002)

    Article  Google Scholar 

  51. R.N. Mariammal, K. Ramachandran, B. Renganathan, D. Sastikumar, Sens Actuators B Chem 169, 199–207 (2012)

    Article  Google Scholar 

  52. M. El-sherif, L. Bansal, J. Yuan, Sensors 7, 3100 (2007)

    Article  Google Scholar 

  53. J. Li, H. Fan, X. Jia, W. Yang, F. Pinyang, Appl Phys A Mater Sci Process 98, 537 (2010)

    Article  ADS  Google Scholar 

  54. B. Renganathan, D. Sastikumar, G. Gobi, N.R. Yogamalar, A.C. Bose, Sensors Actuators B Chem 156, 263 (2011)

    Article  Google Scholar 

  55. T. Subashini, B. Renganathan, A. Stephen, T. Prakash, Mater Sci Semicond Process 88, 181 (2018)

    Article  Google Scholar 

  56. S.K. Rao, A. Kalai Priya, S. Manjunath Kamath, P. Karthick, B. Renganathan, S. Anuraj, D. Sastikumar, K. Jeyadheepan, C. Gopalakrishnan, J Alloys Compd 838, 155603 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Sastikumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalai Priya, A., Yogesh, G.K., Subha, K. et al. Synthesis of silver nano-butterfly park by using laser ablation of aqueous salt for gas sensing application. Appl. Phys. A 127, 292 (2021). https://doi.org/10.1007/s00339-021-04370-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04370-7

Keywords

Navigation