Skip to main content
Log in

Fabrication of ON/OFF switching response based on n-Ni-doped MoO3/p-Si junction diodes using Ni-MoO3 thin films as n-type layer prepared by JNS pyrolysis technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The influence of nickel (Ni) doping concentrations on structural, optical, electrical and diode properties of molybdenum trioxide (MoO3) thin films has been studied systematically. Ni-doped MoO3 films and diodes were prepared for various doping concentrations of Ni such as 0, 3, 6 and 9 wt.% by jet nebulizer spray (JNS) pyrolysis technique. The structural properties of Ni-doped MoO3 films were analyzed by X-ray diffraction (XRD) pattern and scanning electron microscopy (SEM). The prepared films were exhibited in the orthorhombic crystal structure and sub-microsized plate-like surface morphology. The energy-dispersive X-ray spectroscopy (EDX) analysis confirmed the presence of Ni, Mo and O elements in the prepared films. Ultraviolet–visible (UV–vis) analysis results showed that the absorbance decreases with the increasing of Ni doping concentration and the minimum band gap energy (Eg = 2.25) was obtained for 9 wt.% Ni-doped MoO3 film. From current–voltage (IV) characterization, the conductivity is increased by increasing the Ni doping concentration in MoO3 thin films. The diode measurements were performed in darkness and under light illumination of a halogen lamp. The methods of IV, Cheung’s and Norde were used to calculate the diode parameters of ideality factor (n), barrier height (Φb) and sheet resistance (Rs). Also, the light ON/OFF switching response of the fabricated n-NiMoO3/p-Si diodes was analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G. Wang, T. Jiu, P. Li, J. Li, C. Sun, F. Lu, J. Fang, Preparation and characterization of MoO3 hole-injection layer for organic solar cell fabrication and optimization. Sol. Energy Mater. Sol. Cells 120, 603–609 (2014)

    Article  Google Scholar 

  2. Q. Fu, J. Chen, C. Shi, D. Ma, Room-temperature sol–gel derived molybdenum oxide thin films for efficient and stable solution-processed organic light-emitting diodes. ACS Appl. Mater. Interfaces. https://doi.org/10.1021/am4007319.

  3. R. Pandeeswari, B.G. Jeyaprakash, Nanostructured α-MoO3 thin film as a highly selective TMA sensor. Biosens. Bioelectron. (2013). https://doi.org/10.1016/j.bios.2013.09.057

    Article  Google Scholar 

  4. T.N. Lin, Y.H. Lin, C.T. Lee, S. Han, K.W. Weng, Electrochromic properties of bipolar pulsed magnetron sputter deposited tungsten-molybdenum oxide films. Thin Solid Films (2015). https://doi.org/10.1016/j.tsf.2014.12.036

    Article  Google Scholar 

  5. L. Zheng, Y. Xu, D. Jin, Y. Xie, Novel metastable hexagonal MoO3 nanobelts: synthesis, photochromic and electrochromic properties. Chem. Mater. 21, 5681–5690 (2009)

    Article  Google Scholar 

  6. C.L. Liu, Y. Wang, C. Zhang, X.S. Li, W.S. Dong, In situ synthesis of α-MoO3/graphene composites as anode materials for lithium ion battery. Mater. Chem. Phys. 143, 1111–1118 (2014)

    Article  Google Scholar 

  7. P. Vivek, J. Chandrasekaran, R. Marnadu, S. Maruthamuthu, V. Balasubramani, Incorporation of Ba2+ ions on the properties of MoO3 thin films and fabrication of positive photo-response Cu/Ba–MoO3/p-Si structured diodes. Superlattices Microstruct 133, 106197 (2019)

    Article  Google Scholar 

  8. K.A. Gesheva, T. Ivanova, A low-temperature atmospheric pressure CVD process for growing thin films of MoO3 and MoO3-WO3 for electrochromic device applications. Chem. Vap. Depos. 12, 231–238 (2006)

    Article  Google Scholar 

  9. K. Galatsis, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Sol-gel prepared MoO3-WO3 thin films for O2 gas sensing. Sens. Actuators B 77, 478–483 (2001)

    Article  Google Scholar 

  10. B. Kannan, R. Pandeeswari, B.G. Jeyaprakash, Influence of precursor solution volume on the properties of spray deposited α-MoO3 thin films. Ceram. Int. 40, 5817–5823 (2014)

    Article  Google Scholar 

  11. M.B. Rahmani, S.H. Keshmiri, J. Yu, A.Z. Sadek, L. Al-Mashat, A. Moafi, K. Latham, Y.X. Li, W. Wlodarski, K. Kalantar-zadeh, Gas sensing properties of thermally evaporated lamellar MoO3. Sens. Actuators B 145, 13–19 (2010)

    Article  Google Scholar 

  12. K. Gesheva, A. Cziraki, T. Ivanova, A. Szekeres, Structure and composition of thermally annealed Mo- and W-based CVD metal oxide thin films. Thin Solid Films 492, 322–326 (2005)

    Article  ADS  Google Scholar 

  13. N. Sethupathi, P. Thirunavukkarasu, V.S. Vidhya, R. Thangamuthu, G.V.M. Kiruthika, K. Perumal, H.C. Bajaj, M. Jayachandran, Deposition and optoelectronic properties of ITO (In2O3–Sn) thin films by jet nebulizer spray (JNS) pyrolysis technique. J. Mater. Sci.: Mater Electron. 23, 1087–1093 (2012)

    Google Scholar 

  14. M. Balaji, J. Chandrasekaran, M. Raja, Role of substrate temperature on MoO3 thin films by the JNS pyrolysis technique for p-n junction diode application. Mater. Sci. Semicond. Process. 43, 104–113 (2016)

    Article  Google Scholar 

  15. M. Balaji, J. Chandrasekaran, M. Raja, S. Rajesh, Structural, optical and electrical properties of Ru doped MoO3 thin films and its p–n diode application by JNS pyrolysis technique. J. Mater. Sci.: Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-5300-0

    Article  Google Scholar 

  16. R.K. Mishra, P.P. Sahay, Zn-doped and undoped SnO2 nanoparticles: a comparative structural, optical and LPG sensing properties study. Mater. Res. Bull. 47, 4112–4118 (2012)

    Article  Google Scholar 

  17. M. Raja, J. Chandrasekaran, M. Balaji, The structural, optical and electrical properties of spin coated WO3 thin films using organic acids. Silicon (2016). https://doi.org/10.1007/s12633-016-9413-0

    Article  Google Scholar 

  18. M. Dhanasankar, K.K. Purushothaman, G. Muralidharan, Optical, structural and electrochromic studies of molybdenum oxide thin films with nanorod structure. Solid State Sci. 12, 246–251 (2010)

    Article  ADS  Google Scholar 

  19. E. Burstein, Anomalous optical absorption limit in InSb. Phys. Rev. 93, 632–633 (1954)

    Article  ADS  Google Scholar 

  20. G. Turgut, E.F. Keskenler, S. Aydin, E. Sonmez, S. Dogan, B. Duzgun, M. Ertugrul, Effect of Nb doping on structural, electrical and optical properties of spray deposited SnO2 thin films. Superlattices Microstruct. 56, 107–116 (2013)

    Article  ADS  Google Scholar 

  21. Y. Huang, G. Li, J. Feng, Q. Zhang, Investigation on structural, electrical and optical properties of tungsten-doped tin oxide thin films. Thin Solid Films 518, 1892–1896 (2010)

    Article  ADS  Google Scholar 

  22. X. Zhao, Z. Wu, D. Guo, W. Cui, P. Li, Y. An, L. Li, W. Tang, Growth and characterization of α-phase Ga2– xSnxO3 thin films for solar-blind ultraviolet applications. Semicond. Sci. Technol. 31(1–6), 065010 (2016)

    Article  ADS  Google Scholar 

  23. A.R. Babar, P.R. Deshamukh, R.J. Deokate, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Gallium doping in transparent conductive ZnO thin films prepared by chemical spray pyrolysis. J. Phys. D: Appl. Phys. 41(1–6), 135404 (2008)

    Article  ADS  Google Scholar 

  24. D. Zhou, F. Shi, D. Xie, D.H. Wang, X.H. Xia, X.L. Wang, C.D. Gu, J.P. Tu, Bi-functional Mo-doped WO3 nanowire array electrochromism-plus electrochemical energy storage. J. Colloid Interface Sci. (2015). https://doi.org/10.1016/j.jcis.2015.11.068

    Article  Google Scholar 

  25. M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, N. Sabari Arul, S. Vasantha, R. Balasundaraprabhu, Studies on optical absorption and structural properties of Fe doped CdS quantum dots, Solid State Sci. 12, 1554–1559 (2010).

  26. P. Scherrer, Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nachr. Ges. Wiss. Gottingen 26, 98 (1918)

    Google Scholar 

  27. V. Madhavi, P. Jeevan Kumar, P. Kondaiah, O.M. Hussain, S. Uthanna, Effect of molybdenum doping on the electrochromic properties of tungsten oxide thin films by RF magnetron sputtering. Ionics (2014). https://doi.org/10.1007/s11581-014-1073-8

    Article  Google Scholar 

  28. K.J. Lethy, D. Beena, V.P. Mahadevan Pillai, V. Ganesan, Band gap renormalization in titania modified nanostructured tungsten oxide thin films prepared by pulsed laser deposition technique for solar cell applications, J. Appl. Phys. 104 (2008) 033515(1–12).

  29. V. Nirupama, M. ChandraSekhar, T.K. Subramanyam, S. Uthanna, Structural and electrical characterization of magnetron sputtered MoO3 thin films. J. Phys. Conf. Ser. 208(1–6), 012101 (2010)

    Article  Google Scholar 

  30. R. Marnadu, J. Chandrasekaran, P. Vivek, V. Balasubramani, S. Maruthamuthu, Impact of phase transformation in WO3 thin films at higher temperature and its compelling interfacial role in Cu/WO3/p-Si structure schottky barrier diodes. Z. Phys. Chem. (2019). https://doi.org/10.1515/zpch-2018-1289

    Article  Google Scholar 

  31. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, S. Maruthamuthu, P. Balraju, Influence of metal work function and incorporation of Sr atom on WO3thin films for MIS and MIM structured SBDs. Superlattices Microstruct. 119, 134–149 (2018)

    Article  ADS  Google Scholar 

  32. J. Saju, O.N. Balasundaram, Optimization and characterization of NiO thin films prepared via NSP technique and its p–n junction diode application. Mater. Sci. Poland 37(3), 338–346 (2019)

    Article  ADS  Google Scholar 

  33. L.R. Canfield, R. Vest, T.N. Woods, R. Korde, Silicon photodiodes with integrated thin film filters for selective bandpasses in the extreme ultraviolet. Ultraviolet Tech. V 2282, 31–38 (1994)

    Article  ADS  Google Scholar 

  34. R. Marnadu, J. Chandrasekaran, S. Maruthamuthu, V. Balasubramani, P. Vivek, R. Suresh, Ultra-high photoresponse with superiorly sensitive metal-insulator-semiconductor (MIS) structured diodes for UV photodetector application. Appl Surf Sci 480, 308–322 (2019)

    Article  ADS  Google Scholar 

  35. R. Marnadu, J. Chandrasekaran, M. Raja, M. Balaji, V. Balasubramani, Impact of Zr content on multiphase zirconium–tungsten oxide (Zr–WOx) films and its MIS structure of Cu/Zr–WOx/p-Si Schottky barrier diodes. J. Mater. Sci. Mater Electron. 29, 2618–2627 (2018)

    Article  Google Scholar 

  36. N. Senthilkumar, M. SethuRaman, J. Chandrasekaran, R. Priya, M. Chavali, R. Suresh, Effect of post-growth annealing on the structural, optical and electrical properties of V2O5 nanorods and its fabrication, characterization of V2O5/p-Si junction diode. Mater. Sci. Semicond. Process. 41, 497–507 (2016)

    Article  Google Scholar 

  37. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)

    Article  ADS  Google Scholar 

  38. H. Norde, A modified forward IV plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052 (1979)

    Article  ADS  Google Scholar 

  39. S. Karatas, Effect of series resistance on the electrical characteristics and interface state energy distributions of Sn/p-Si (MS) Schottky diodes. Microelectron. Eng. 87, 1935–1940 (2010)

    Article  Google Scholar 

  40. R.K. Gupta, K. Ghosh, P.K. Kahol, Temperature dependence of current-voltage characteristics of gold-strontium titanate thin film Schottky diode. Physica E 42, 1509–1512 (2010)

    Article  ADS  Google Scholar 

  41. M. Raja, J. Chandrasekaran, M. Balaji, P. Kathirvel, R. Marnadu, Influence of metal (M = Cd, In, and Sn) dopants on the properties of spin-coated WO3 thin films and fabrication of temperature dependent heterojunction diodes. J. Sol-Gel Sci Technol. (2020). https://doi.org/10.1007/s10971-019-05207-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the DST, Government of India, for the major research project (EMR/2016/007874). Author M. Shkir also thankful to the Deanship of Scientific Research at King Khalid University, KSA for funding this work through research groups program under grant number R.G.P. 2/41/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Chandrasekaran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balaji, M., Chandrasekaran, J., Raja, M. et al. Fabrication of ON/OFF switching response based on n-Ni-doped MoO3/p-Si junction diodes using Ni-MoO3 thin films as n-type layer prepared by JNS pyrolysis technique. Appl. Phys. A 126, 216 (2020). https://doi.org/10.1007/s00339-020-3392-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-3392-0

Keywords

Navigation