Skip to main content
Log in

Femtosecond laser ablation of Zn in air and ethanol: effect of fluence on the surface morphology, ablated area, ablation rate and hardness

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports the effect of Ti:Sapphire laser (800 nm, 30 fs) fluence on the surface morphology, ablated area, ablation rate and hardness of a femtosecond laser irradiated Zn in air and ethanol. Targets were exposed to 1000 succeeding pulses at various fluences ranging from 1.3 to 5 J cm−2. To characterize the growth of structures on the surface of irradiated Zn, Field Emission Scanning Electron Microscopy (FESEM) has been performed. The ablation depth has been measured using a confocal microscope. Nonuniform surface morphology with an appearance of both micro and nanoscale droplets, particulates and rims has been observed in case of air-assisted ablation, whereas, in ethanol, nanoscale colloids, droplets, pores and bowl-shaped cavities have been formed. The ablation of Zn in air is responsible for deep craters with pronounced melt expulsions and ripples. Whereas, shallow and clean craters are formed in ethanol. The ablation threshold fluence is evaluated analytically and experimentally by employing three methods, i.e., squared diameter, depth ablation rate, and volume ablation rates. The hardness of irradiated targets is higher as compared to untreated Zn and shows an increasing trend with increasing fluence for both environments. However, in the case of ethanol, the hardness values are higher than air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. M. Akram, S. Bashir, S.A. Jalil, M. Elkabbash, F. Aumayr, A. Ajami, W. Husinsky, K. Mahmood, M.S. Rafique, C. Guo, Opt. Mat. Exp. 9, 3183 (2019)

    Article  Google Scholar 

  2. L. Jiang, H.L. Tsai, Appl. Phys. Lett. 87, 151104 (2005)

    Article  ADS  Google Scholar 

  3. D.S. Ivanov, B. Rethfeld, Appl. Surf. Sci. 255, 9724 (2009)

    Article  ADS  Google Scholar 

  4. S. Bashir, M.S. Rafique, C.S. Nathala, W. Husinsky, Appl. Surf. Sci. 90, 53 (2014)

    Article  ADS  Google Scholar 

  5. N.M. Bulgakova, V.P. Zhukov, A.Y. Vorobyev, C. Guo, Appl. Phys. A 92, 883 (2008)

    Article  ADS  Google Scholar 

  6. S. Bashir, M.S. Rafique, W. Husinsky, Appl. Surf. Sci. 255, 8372 (2009)

    Article  ADS  Google Scholar 

  7. S. Bashir, M.S. Rafique, W. Husinsky, Rad. Eff. Def. Solids 168, 902 (2013)

    Article  Google Scholar 

  8. F. Costache, S. Eckert, J. Reif, Appl. Surf. Sci. 252, 4416 (2006)

    Article  ADS  Google Scholar 

  9. R. Fang, A. Vorobyev, C. Guo, Light Sci. Appl. 6, e16256 (2017)

    Article  ADS  Google Scholar 

  10. J. Zhang, Y. He, B. Lam, C. Guo, Opt. Exp. 25, 20323 (2017)

    Article  ADS  Google Scholar 

  11. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 134108 (2006)

    Article  ADS  Google Scholar 

  12. N. Maharjan, W. Zhou, Y. Zhou, Y. Guan, N. Wu, Surf. Coat. Tech. 366, 311 (2019)

    Article  Google Scholar 

  13. S. Bashir, M.S. Rafique, W. Husinsky, Nucl. Inst. Meth B 349, 230 (2015)

    Article  ADS  Google Scholar 

  14. E.B. Barmina, E. Stratakis, C. Fotakis, G.A. Shafeev, Quant. Elect. 40, 1012 (2010)

    Article  ADS  Google Scholar 

  15. N. Lasemi, U. Pacher, L.V. Zhigilei, O. Bomatí-Miguel, R. Lahoz, W. Kautek, Appl. Surf. Sci. 433, 772 (2018)

    Article  ADS  Google Scholar 

  16. A.S. Nikolov, I.I. Balchev, N.N. Nedyalkov, I.K. Kostadinov, D.B. Karashanova, G.B. Atanasova, Appl. Phys. A 2017, 123 (2017)

    Google Scholar 

  17. J. Yong, Z. Zhan, S.C. Singh, F. Chen, C. Guo, Langmuir 35, 9318 (2019)

    Article  Google Scholar 

  18. E.V. Barmina, M. Barberoglu, V. Zorba, A.V. Simakin, E. Stratakis, C. Fotakis, G.A. Shafeev, Quant. Elect. 39, 89 (2009)

    Article  ADS  Google Scholar 

  19. S. Bashir, M. Shahid-Rafique, A. Ajami, W. Husinsky, I.K. Umm, Appl. Phys. A 113, 673 (2013)

    Article  ADS  Google Scholar 

  20. E.V. Barmina, A.A. Serkov, E. Stratakis, C. Fotakis, V.N. Stolyarov, I.N. Stolyarov, G.A. Shafeev, Appl. Phys. A 106, 1 (2012)

    Article  ADS  Google Scholar 

  21. H. Mustafa, M. Mezera, D.T.A. Matthews, G.R.B.E. Römer, Appl. Surf. Sci. 488, 10 (2019)

    Article  ADS  Google Scholar 

  22. H. Mustafa, D.T.A. Matthews, G.R.B.E. Römer, Mat. Des. 169, 107675 (2019)

    Google Scholar 

  23. H. Mustafa, R. Pohl, T.C. Bor, B. Pathiraj, D.T.A. Matthews, G.R.B.E. Römer, Opt. Exp. 26, 18664 (2018)

    Article  ADS  Google Scholar 

  24. H. Mustafa, M. Jalaal, W. Ya, N. Ur-Rahman, D.T.A. Matthews, G.R.B.E. Romer, J. Laser Micro Nanoeng. 13, 178 (2018)

    Google Scholar 

  25. B.N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann, Appl. Phys. A 63, 109 (1997)

    Article  ADS  Google Scholar 

  26. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, JOSA B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  27. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  28. A. Garcia-Giron, D. Sola, J.I. Peña, Appl. Surf. Sci. 363, 548 (2016)

    Article  ADS  Google Scholar 

  29. H. Liu, F. Chen, X. Wang, Q. Yang, H. Bian, J. Si, X. Hou, Thin Solid Films 518, 5188 (2010)

    Article  ADS  Google Scholar 

  30. L. Berthe, R. Fabbro, P. Peyre, E. Bartnicki, J. Appl. Phys. 85, 7552 (1999)

    Article  ADS  Google Scholar 

  31. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, J. Appl. Phys. 68, 775 (1990)

    Article  ADS  Google Scholar 

  32. T.J.Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, J. Bonse, J. Appl. Phys. 116, 074902 (2014)

    Article  ADS  Google Scholar 

  33. A.Y. Vorobyev, C. Guo, J. Phys. Conf. Ser. 59, 579 (2007)

    Article  ADS  Google Scholar 

  34. D. Zhang, C. Zhang, J. Liu, Q. Chen, X. Zhu, C. Liang, ACS Appl. Nano Mater. 2, 28 (2019)

    Article  Google Scholar 

  35. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117, 3990 (2017)

    Article  Google Scholar 

  36. S.C. Singh, R.K. Kotnala, R. Gopal, J. Appl. Phys. 118, 064305 (2015)

    Article  ADS  Google Scholar 

  37. T. Sasaki, Y. Shimizu, N. Koshizaki, J. Photochemist Photobiol. A: Chem. 182, 335 (2006)

    Article  Google Scholar 

  38. J. Bonse, J. Krüger, J. Appl. Phys. 108, 034903 (2010)

    Article  ADS  Google Scholar 

  39. J.E. Sipe, A. Young, F. Jeff, J. S. Preston, H. M. van-Driel, Phys. Rev. B 27:141 (1983)

  40. K. Okamuro, M. Hashida, Y. Miyasaka, Y. Ikuta, S. Tokita, S. Sakabe, Phys. Rev. B 82, 165417 (2010)

    Article  ADS  Google Scholar 

  41. S. Sakabe, M. Hashida, S. Tokita, S. Namba, K. Okamuro, Phys. Rev. B 79(3), 033409 (2009)

    Article  ADS  Google Scholar 

  42. M.H. Hong, K.Y. Ng, Q. Xie, L.P. Shi, T.C. Chong, Appl. Phys. A 93, 153 (2008)

    Article  ADS  Google Scholar 

  43. P. Lorazo, L.J. Lewis, M. Meunier, Phys. Rev. B 73, 1 (2006)

    Article  Google Scholar 

  44. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  45. G. Miyaji, K. Miyazaki, Opt. Exp. 16, 16265 (2008)

    Article  ADS  Google Scholar 

  46. G.W. Yang, Prog. Mat. Sci. 52, 648 (2007)

    Article  Google Scholar 

  47. C. Li, J. Wang, X. Wang, Phys. Lett. A 378, 3319 (2014)

    Article  ADS  Google Scholar 

  48. M. Chen, L. Xiangdong, Y. Liu, M. Zhao, Chin. Opt. Lett. 10, 051402 (2012)

    Article  ADS  Google Scholar 

  49. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE J. Quant. Elect. 23, 1 (2017)

    Google Scholar 

  50. E.G. Gamaly, A.V. Rode, B. Luther-Davies, V.T. Tikhonchuk, Phys. Plasmas 9, 949 (2002)

    Article  ADS  Google Scholar 

  51. D.R. Paschotta, The Encyclopedia of Laser Physics and Technology, http://www.rp-photonics.com/encyclopedia.html (2019)

  52. M.Z. Butt, Laser ablation characteristics of metallic materials: Role of Debye-Waller thermal parameter. IOP Conf. Ser. Mat. Sci. Eng. 60, 012068 (2014)

    Article  Google Scholar 

  53. J. Byskov-Nielsen, J.M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 101, 97 (2010)

    Article  ADS  Google Scholar 

  54. F.C. Porter, Zinc Handbook: Properties, Processing, and Use in Design. CRC Press. http://refhub.elsevier.com/S0169-4332(19)31373-X/rf0095 (1991)

  55. M. Hashida, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa, J.F. Wagner, Appl. Surf. Sci. 197–198, 862 (2002)

    Article  ADS  Google Scholar 

  56. J. Jandeleit, G. Urbasch, H.D. Hoffmann, H.G. Treusch, E.W. Kreutz, Appl. Phys. A 63, 117 (1996)

    Article  ADS  Google Scholar 

  57. M. Akram, S. Bashir, A. Hayatat, K. Mahmooda, R. Ahmad, M.K. Rahaman, Laser Part. Beams 32, 119 (2014)

    Article  ADS  Google Scholar 

  58. A.Y. Vorobyev, C. Guo, J. Nano Res. 14, 57 (2011)

    Article  Google Scholar 

  59. L.M.J. Santillán, F.A. Videla, M.B. Fernández van Raap, D.C. Schinca, L.B. Scaffardi, J. Appl. Phys. 113, 134305 (2013)

    Article  ADS  Google Scholar 

  60. L. Berthe, R. Fabbro, P. Peyre, L. Tollier, E. Bartnicki, J. Appl. Phys. 82(6), 2826–2832 (1997)

    Article  ADS  Google Scholar 

  61. A. Pereira, A. Cros, P. Delaporte, S. Georgiou, A. Manousaki, W. Marine, M. Sentis, Appl. Phys. A 79, 1433 (2004)

    Article  ADS  Google Scholar 

  62. L.M. Cabalin, J.J. Laserna, Spectrochim. Acta B: Atomic Spect. 53, 723 (1998)

    Article  ADS  Google Scholar 

  63. M.B. Agranat, S.I. Ashitkov, V.E. Fortov, A.V. Kirillin, A.V. Kostanovskii, S.I. Anisimov, P.S. Kondratenko, Appl. Phys. A 69, 637 (1999)

    Article  ADS  Google Scholar 

  64. A.F.S. M. Hashida, O. Gobert, G. Petite, J. F. Wagner, Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics) (2001), p. 178

  65. A.Y. Vorobyev, C. Guo, Opt. Exp. 14, 13113 (2006)

    Article  ADS  Google Scholar 

  66. A. Klini, P.A. Loukakos, D. Gray, A. Manousaki, C. Fotakis, Opt. Exp. 16, 11300 (2008)

    Article  ADS  Google Scholar 

  67. R. Fang, A. Vorobyev, C. Guo, Light Sci. Appl. 6, 1 (2017)

    Google Scholar 

  68. S. George, Infrared and Raman Charteristic Group Frequencies (Tables and Charts) (Third Edition) (Wiley, England, 2001).

    Google Scholar 

  69. K. Sasaki, T. Nakano, W. Soliman, N. Takada, Appl. Phys. Exp. 2, 0465011 (2009)

    Google Scholar 

  70. W.M. Hlaing, Infrared spectroscopy of zinc oxide and magnesium nanostructures, in: Materials Science Program, Washington State University (2007)

  71. H.W. Kang, H. Lee, A.J. Welch, J. Appl. Phys. 103, 083101 (2008)

    Article  ADS  Google Scholar 

  72. N.D. Mei, L.H. Yang, S.D. Zhang, Chin. J. Chem. 24, 750 (2006)

    Article  Google Scholar 

  73. H.I. Wang, W.T. Tang, L.W. Liao, P.S. Tseng, C.W. Luo, C.S. Yang, T. Kobayashi, J. Nanomaterials 1, 1 (2012)

    Google Scholar 

  74. M.A.M.A.L.E. Murr, Shock Waves and High-Strain-Rate Phenomena In Metals (Plenum Publishing Corporation, New York, 1981).

    Google Scholar 

  75. J.S. Hoppius, L.M. Kukreja, M. Knyazeva, F. Pöhl, F. Walther, A. Ostendorf, E.L. Gurevich, Appl. Surf. Sci. 435, 1120 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The first author is thankful to OeAD (Austrian Agency for International Cooperation in Education and Research) Austria for funding Ernst Mach Follow-up Grant for funding 3 months post doctorate to stay at Austria

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shazia Bashir.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashir, S., Rafique, M.S., Ajami, A.A. et al. Femtosecond laser ablation of Zn in air and ethanol: effect of fluence on the surface morphology, ablated area, ablation rate and hardness. Appl. Phys. A 127, 226 (2021). https://doi.org/10.1007/s00339-020-04226-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04226-6

Keywords

Navigation