Skip to main content
Log in

Fully developed entropy-optimized MHD nanofluid flow by a variably thickened rotating surface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Entropy generation analysis for three-dimensional (3D) magnetohydrodynamic (MHD) flow of viscous fluid through a rotating disk is addressed in this article. Entropy generation is explored as a function of temperature and velocity. The modeling of the considered problem is performed through Buongiorno model. Conservation of energy comprises dissipation, convective heat transport and Joule heating. Flow under consideration is because of nonlinear stretching velocity of disk. Transformations used lead to the reduction of partial differential equations into ordinary differential equations. Total entropy generation rate is scrutinized. Non-linear computations have been carried out. Domain of convergence for the obtained solutions is identified. Radial, axial and tangential velocities are interpreted. Entropy equation is studied in the presence of dissipation, Brownian diffusion and thermophoresis effects. Velocity and temperature gradients are discussed graphically. Meaningful results are summed up in the concluding section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the article, the data are made by the authors themselves and do not involve references of others.

Abbreviations

u, V, w :

Velocity components

\(r,\vartheta ,z\) :

Space coordinates

T :

Fluid temperature

T :

Ambient temperature

T f :

Convective fluid temperature

C:

Fluid concentration

C :

Ambient concentration

u :

Stretching velocity in r direction

B 0 :

Strength of magnetic field

ρ :

Fluid density

c p :

Specific heat

qr:

Radiative heat flux

ℎ:

Convective heat transfer coefficient

D :

Brownian diffusion coefficient

D :

Thermophoresis diffusion coefficient

F :

Dimensionless velocity

M:

Magnetic parameter

A:

Ratio of velocities

Rd:

Radiation parameter

Pr:

Prandtl number

N b :

Brownian motion parameter

N T :

Thermophoresis parameter

S c :

Schmidt number

β :

Biot number

Nu x :

Local Nusselt number

Re x :

Local Reynolds number

k∗:

Coefficient of mean absorption

a, c :

Positive constants

τ :

Surface shear stress

σ∗:

Stefan–Boltzmann constant parameter

\(\theta\) :

Dimensionless temperature

\(\Phi\) :

Dimensionless concentration

\(\eta\) :

Dimensionless space variable

\(\nu\) :

Kinematic viscosity

μ :

Dynamic viscosity

∞:

Condition at the free stream

w :

Condition at the surface

References

  1. T. Hayat, M. Rashid, M. Imtiaz, A. Alsaedi, Nanofluid flow due to rotating disk with variable thickness and homogeneous-heterogeneous reactions. Int. J. Heat Mass Transf. 113, 96–105 (2017)

    Article  Google Scholar 

  2. D.H. Doh, M. Muthtamilselvan, Thermophoretic particle deposition on magnetohydrodynamic flow of micropolar fluid due to a rotating disk. Int. J. Mech. Sci. 130, 350–359 (2017)

    Article  Google Scholar 

  3. T. Hayat, S. Qayyum, M. Imtiaz, A. Alsaedi, Flow between two stretchable rotating disks with Cattaneo-Christov heat flux model. Result Physics. 7, 126–133 (2017)

    Article  ADS  Google Scholar 

  4. C. Yin, L. Zheng, C. Zhang, X. Zhang, Flow and heat transfer of nanofluids over a rotating disk with uniform stretching rate in the radial direction. Propuls. Power Res. 6, 25–30 (2017)

    Article  Google Scholar 

  5. M. Turkyilmazoglu, Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk. Int. J. Eng. Sci. 51, 233–240 (2012)

    Article  MathSciNet  Google Scholar 

  6. S.J. Xun, L. Zheng, X. Chen, X. Zhang, Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing. Int. J. Heat Mass Transf. 103, 1214–1224 (2016)

    Article  Google Scholar 

  7. R. Muhammad, M.I. Khan, N.B. Khan, M. Jameel, Magnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation. Comput. Methods Programs Biomed. 189, 105294 (2020)

    Article  Google Scholar 

  8. M.I. Khan, F. Shah, M. Waqas, T. Hayat, A. Alsaedi, The role of γAl2O3−H2O and γAl2O3−C2H6O2 nanomaterials in Darcy-Forchheimer stagnation point flow: an analysis using entropy optimization. Int. J. Thermal Sci. 140, 20–27 (2019)

    Article  Google Scholar 

  9. T. Hayat, F. Shah, M.I. Khan, M.I. Khan, A. Alsaedi, Entropy analysis for comparative study of effective Prandtl number and without effective Prandtl number via γAl2O3−H2O and γAl2O3−C2H6O2 nanoparticles. J. Mol. Liq. 266, 814–823 (2018)

    Article  Google Scholar 

  10. R.A. Kareem, J.A. Gbadeyan, Entropy generation and thermal criticality of generalized Couette hydromagnetic flow of two-step exothermic chemical reaction in a channel. Int J Thermofluids 5–6, 100037 (2020)

    Article  Google Scholar 

  11. Z.Y. Xie, Y.J. Jian, Entropy generation of two-layer magnetohydrodynamic electroosmotic flow through micro parallel channels. Energy 139, 1080–1093 (2017)

    Article  Google Scholar 

  12. M.M. Rashidi, N. Kavyani, S. Abelman, Investigation of entropy generation in MHD and slip flow over a rotating porous disk with variable properties. Int. J. Heat Mass Transf. 70, 892–917 (2014)

    Article  Google Scholar 

  13. S. Qayyum, M. Ijaz Khan, T. Hayat, A. Alsaedi, M. Tamoor, Entropy generation in dissipative flow of Williamson fluid between two rotating disks. Int. J. Heat Mass Transfer 127, 933–942 (2018)

    Article  Google Scholar 

  14. T. Hayat, M.I. Khan, S. Qayyum, M.I. Khan, A. Alsaedi, Entropy generation for flow of Sisko fluid due to rotating disk. J. Mol. Liq. 264, 375–385 (2018)

    Article  Google Scholar 

  15. S.U. Khan, M.M. Bhatti, S. Qaisar, I.A. Khan, Swimming of micro-organism over an oscillatory stretched surface filled with a magnetic third-grade nanofluid: an application of activation energy. Chin. J. Phys. 65, 64–74 (2020)

    Article  MathSciNet  Google Scholar 

  16. S. Hussain, A. Shah, S. Ayub, A. Ullah, An approximate analytical solution of the Allen-Cahn equation using homotopy perturbation method and homotopy analysis method. Heliyon 5, e03060 (2019)

    Article  Google Scholar 

  17. T. Hayat, M.I. Khan, S. Qayyum, A. Alsaedi, Entropy generation in flow with silver and copper nanoparticles. Colloids Surf., A 539, 335–346 (2018)

    Article  Google Scholar 

  18. P.A. Naik, Z. Jian, M. Ghoreishi, Estimating the approximate analytical solution of HIV viral dynamic model by using homotopy analysis method. Chaos Solitons Fract. 131, 109500 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  19. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)

    Article  ADS  Google Scholar 

  20. M.R. Shirkhani, H.A. Hoshyar, I. Rahimipetroudi, H. Akhavan, D.D. Ganji, Unsteady time-dependent incompressible Newtonian fluid flow between two parallel plates by homotopy analysis method (HAM), homotopy perturbation method (HPM) and collocation method (CM). Propuls. Power Res. 7, 247–256 (2018)

    Article  Google Scholar 

  21. R. Muhammad, M.I. Khan, M. Jameel, N.B. Khan, Fully developed Darcy-Forchheimer mixed convective flow over a curved surface with activation energy and entropy generation. Comput. Methods Programs Biomed. 188, 105298 (2020)

    Article  Google Scholar 

  22. Z. Un Nisa, N.A. Shah, I. Tlili, S. Ullah, M. Nazar, Natural convection flow of second grade fluid with thermal radiation and damped thermal flux between vertical channels. Alexandria Eng. J. 58, 1119–1125 (2019)

    Article  Google Scholar 

  23. M.I. Khan, F. Alzahrani, A. Hobiny, Heat transport and nonlinear mixed convective nanomaterial slip flow of Walter-B fluid containing gyrotactic microorganisms. Alexandria Eng. J. 59, 1761–1769 (2020)

    Article  Google Scholar 

  24. I. Tlili, M. Bilal, M.Z.A. Qureshi, Z. Abdelmalek, Thermal analysis of magnetized pseudoplastic nano fluid flow over 3D radiating non-linear surface with passive mass flux control and chemically responsive species. J. Mater. Res. Technol. 9, 8125–8135 (2020)

    Article  Google Scholar 

  25. F. Haq, S. Kadry, Y.M. Chu, M. Khan, M.I. Khan, Modeling and theoretical analysis of gyrotactic microorganisms in radiated nanomaterial Williamson fluid with activation energy. J. Mater. Res. Technol. 9, 10468–10477 (2020)

    Article  Google Scholar 

  26. R. Ahmed, N. Ali, K. Al-Khaled, S.U. Khan, I. Tlili, Finite difference simulations for non-isothermal hydromagnetic peristaltic flow of a bio-fluid in a curved channel: applications to physiological systems. Comput. Methods Programs Biomed. 195, 105672 (2020)

    Article  Google Scholar 

  27. M.I. Khan, S. Kadry, Y.M. Chu, W.A. Khan, A. Kumar, Exploration of Lorentz force on a paraboloid stretched surface in flow of Ree-Eyring nanomaterial. J. Mater. Res. Technol. 9, 10265–10275 (2020)

    Article  Google Scholar 

  28. M.S. Hashmi, K. Al-Khaled, N. Khan, S.U. Khan, I. Tlili, Buoyancy driven mixed convection flow of magnetized Maxell fluid with homogeneous-heterogeneous reactions with convective boundary conditions. Results Phys. 19, 103379 (2020)

    Article  Google Scholar 

  29. M.I. Khan, F. Alzahrani, A. Hobiny, Z. Ali, Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy. J Mater Res. Technol. 9, 9951–9964 (2020)

    Article  Google Scholar 

  30. S.A. Shehzad, M.G. Reddy, P. VIjayakumari, I. Tlili, Behavior of ferromagnetic Fe2SO4 and titanium alloy Ti6Al4v nanoparticles in micropolar fluid flow. Int. Commun. Heat Mass Transfer. 117, 104769 (2020)

    Article  Google Scholar 

  31. S. Xun, J. Zhao, L. Zheng, X. Chen, X. Zhang, Flow and heat transfer of Ostwald-de Waele fluid over a variable thickness rotating disk with index decreasing. Int. J. Heat Mass Transf. 103, 1214–1224 (2016)

    Article  Google Scholar 

  32. H.I. Andersson, E. de Korte, R. Meland, Flow of a power-law fluid over a rotating disk revisited. Fluid Dyn. Res. 28, 75–88 (2001)

    Article  ADS  Google Scholar 

  33. C.Y. Ming, L.C. Zheng, X.X. Zhang, Steady flow and heat transfer of the powerlaw fluid over a rotating disk. Int. Commun. Heat Mass Transfer 38, 280–284 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Ming Chu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, M.W.A., Shah, F., Khan, M.I. et al. Fully developed entropy-optimized MHD nanofluid flow by a variably thickened rotating surface. Appl. Phys. A 126, 890 (2020). https://doi.org/10.1007/s00339-020-04068-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04068-2

Keyword

Navigation