Skip to main content
Log in

Negative photoconductivity observed in polycrystalline monolayer molybdenum disulfide prepared by chemical vapor deposition

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the negative photoconductivity (NPC) was observed in molybdenum disulfide (MoS2) prepared by chemical vapor deposition. The conductivity drops by 15% in stable light excitation. We speculate that the generation of NPC is due to the electronic transition to the defect state level, which reduces the rate of movement of non-equilibrium carrier. In the low-defect system, free excitons predominate, and the material exhibits positive photoconductivity. It is beneficial to the research on a new single-wavelength photodetector based on NPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Qiao, J. Yuan, Z. Xu, C. Chen, S. Lin, Y. Wang, J. Song, Y. Liu, Q. Khan, H.Y. Hoh, ACS Nano 9, 1886–1894 (2015)

    Google Scholar 

  2. H.S. Lee, S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, Nano Lett. 12, 3695–3700 (2012)

    ADS  Google Scholar 

  3. J.N. Coleman, M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, Science 331, 568–571 (2011)

    ADS  Google Scholar 

  4. N. Joshi, Art. Science and Technology. Photoconductivity, 2nd edn. (Marcel Dekker, New York, 1990), pp. 1–33

    Google Scholar 

  5. G. Du, Z. Guo, S. Wang, R. Zeng, Z. Chen, H. Liu, Chem. Commun. 46, 1106–1108 (2010)

    Google Scholar 

  6. X. Zhang, J. Jie, Z. Wang, C. Wu, L. Wang, Q. Peng, Y. Yu, P. Jiang, C. Xie, J. Mater. Chem. 21, 6736–6741 (2011)

    Google Scholar 

  7. L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U.K. Gautam, A. Lugstein, Y. Koide, Y. Bando, D. Golberg, Nanoscale 3, 1120–1126 (2011)

    ADS  Google Scholar 

  8. Y. Yang, X. Peng, H.-S. Kim, T. Kim, S. Jeon, H.K. Kang, W. Choi, J. Song, Y.-J. Doh, D. Yu, Nano Lett. 15, 5875–5882 (2015)

    ADS  Google Scholar 

  9. S. Panigrahi, A. Bera, D. Basak, ACS Appl. Mater. Interfaces. 1, 2408–2411 (2009)

    Google Scholar 

  10. H. Huang, R. Chen, H. Chen, T. Liu, C. Kuo, C. Chen, H. Hsu, L. Chen, K. Chen, Y. Yang, Appl. Phys. Lett. 96, 062104 (2010)

    ADS  Google Scholar 

  11. B.H. Kim, S.H. Kwon, H.H. Gu, Y.J. Yoon, Phys. E 106, 45–49 (2019)

    Google Scholar 

  12. Y. Fan, A.W. Robertson, X. Zhang, M. Tweedie, Y. Zhou, M.H. Rummeli, H. Zheng, J.H. Warner, ACS Appl. Mater. Interfaces 8, 32963–32970 (2016)

    Google Scholar 

  13. Z.M. Liao, Y. Lu, J. Xu, Appl. Phys. A 95(2), 363–366 (2009)

    ADS  Google Scholar 

  14. P.-C. Wei, S. Chattopadhyay, M.-D. Yang, S.-C. Tong, J.-L. Shen, C.-Y. Lu, H.-C. Shih, L.-C. Chen, K.-H. Chen, Phys. Rev. B 81, 045306 (2010)

    ADS  Google Scholar 

  15. P. Kossacki, Acta Phys. Pol. A 2, 237–248 (2001)

    Google Scholar 

  16. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C.-Y. Chim, G. Galli, F. Wang, Nano Lett. 10, 1271–1275 (2010)

    ADS  Google Scholar 

  17. Y. Wang, E. Liu, A. Gao, T. Cao, M. Long, C. Pan, L. Zhang, J. Zeng, C. Wang, W. Hu, ACS Nano 12, 9513–9520 (2018)

    Google Scholar 

  18. Z. Yin, H. Li, H. Li, L. Jiang, Y. Shi, Y. Sun, G. Lu, Q. Zhang, X. Chen, H. Zhang, ACS Nano 6, 74–80 (2011)

    Google Scholar 

  19. Q. Liu, B. Cook, M. Gong, Y. Gong, D. Ewing, M. Casper, A. Stramel, J. Wu, ACS Appl. Mater. Interfaces 9, 12728–12733 (2017)

    Google Scholar 

  20. W. Wang, A. Klots, D. Prasai, Y. Yang, K.I. Bolotin, J. Valentine, Nano Lett. 15, 7440–7444 (2015)

    ADS  Google Scholar 

  21. W. Bao, X. Cai, D. Kim, K. Sridhara, M.S. Fuhrer, Appl. Phys. Lett. 102, 042104 (2013)

    ADS  Google Scholar 

  22. A.J. Wirth-Lima, P.P. Alves-Sousa, W. Bezerra-Fraga, Appl. Phys. A 125(4), 241 (2019)

    ADS  Google Scholar 

  23. F. Urban, M. Passacantando, F. Giubileo, L. Iemmo, A.D. Bartolomeo, Nanomaterials 8(3), 151 (2018)

    Google Scholar 

  24. Z. Nie, R. Long, J.S. Teguh, C.-C. Huang, D.W. Hewak, E.K. Yeow, Z. Shen, O.V. Prezhdo, Z.-H. Loh, J. Phys. Chem. C 119, 20698–20708 (2015)

    Google Scholar 

  25. T. Korn, S. Heydrich, M. Hirmer, J. Schmutzler, C. Schüller, Appl. Phys. Lett. 99, 102109 (2011)

    ADS  Google Scholar 

  26. P.D. Cunningham, K.M. McCreary, A.T. Hanbicki, M. Currie, B.T. Jonker, L.M. Hayden, J. Phys. Chem. C 120, 5819–5826 (2016)

    Google Scholar 

  27. S. Sim, J. Park, J.-G. Song, C. In, Y.-S. Lee, H. Kim, H. Choi, Phys. Rev. B 88, 075434 (2013)

    ADS  Google Scholar 

  28. A.D. Bartolomeo, L. Genovese, T. Foller, F. Giubileo, G. Luongo, L. Croin, M. Schleberger, Nanotechnology 28(21), 214002 (2017)

    ADS  Google Scholar 

  29. P. Blake, E. Hill, A. Castro Neto, K. Novoselov, D. Jiang, R. Yang, T. Booth, A. Geim, Appl. Phys. Lett. 91, 063124 (2007)

    ADS  Google Scholar 

  30. S. Luo, G. Hao, Y. Fan, L. Kou, C. He, X. Qi, C. Tang, J. Li, K. Huang, J. Zhong, Nanotechnology 26, 105705 (2015)

    ADS  Google Scholar 

  31. H. Terrones, E. Del Corro, S. Feng, J. Poumirol, D. Rhodes, D. Smirnov, N. Pradhan, Z. Lin, M. Nguyen, A. Elias, Sci. Rep. 4, 4215 (2014)

    Google Scholar 

  32. X. Zhang, W. Han, J. Wu, S. Milana, Y. Lu, Q. Li, A.C. Ferrari, P. Tan, Phys. Rev. B 87, 115413 (2013)

    ADS  Google Scholar 

  33. H. Shi, R. Yan, S. Bertolazzi, J. Brivio, B. Gao, A. Kis, D. Jena, H.G. Xing, L. Huang, ACS Nano 7, 1072–1080 (2013)

    Google Scholar 

  34. R. Wang, B.A. Ruzicka, N. Kumar, M.Z. Bellus, H.-Y. Chiu, H. Zhao, Phys. Rev. B 86, 045406 (2012)

    ADS  Google Scholar 

  35. H. Wang, C. Zhang, F. Rana, Nano Lett. 15, 339–345 (2014)

    ADS  Google Scholar 

  36. J. Shang, C. Cong, X. Shen, W. Yang, C. Zou, N. Peimyoo, B. Cao, M. Eginligil, W. Lin, W. Huang, Phys. Rev. Mater. 1, 074001 (2017)

    Google Scholar 

  37. S. Tongay, J. Suh, C. Ataca, W. Fan, A. Luce, J.S. Kang, J. Liu, C. Ko, R. Raghunathanan, J. Zhou, Sci. Rep. 3, 2657 (2013)

    Google Scholar 

  38. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, Phys. Rev. B 88, 045318 (2013)

    ADS  Google Scholar 

  39. C. Zhang, H. Wang, W. Chan, C. Manolatou, F. Rana, Phys. Rev. B 89, 205436 (2014)

    ADS  Google Scholar 

  40. J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones, G. Aivazian, J. Yan, D.G. Mandrus, D. Xiao, W. Yao, Nat. Commun. 4, 1474 (2013)

    ADS  Google Scholar 

  41. C. Lui, A. Frenzel, D. Pilon, Y.-H. Lee, X. Ling, G. Akselrod, J. Kong, N. Gedik, Phys. Rev. Lett. 113, 166801 (2014)

    ADS  Google Scholar 

  42. P. Bushuykin, B. Andreev, V.Y. Davydov, D. Lobanov, D. Kuritsyn, A. Yablonskiy, N. Averkiev, G. Savchenko, Z. Krasilnik, J. Appl. Phys. 123, 195701 (2018)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Scientific Research Found of Hunan Provincial Education Department (no. 17K086).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Li or Chao Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, X., Li, J., Wu, J. et al. Negative photoconductivity observed in polycrystalline monolayer molybdenum disulfide prepared by chemical vapor deposition. Appl. Phys. A 125, 765 (2019). https://doi.org/10.1007/s00339-019-3054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3054-2

Navigation