Skip to main content
Log in

Optical and photocatalytic behaviors of iron selenide thin films grown by chemical bath deposition versus deposition time and annealing temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured FeSe thin films were deposited on glass substrates by chemical bath deposition method and the deposition time varies. The thin films are characterized by X-ray diffraction. Surface morphology of the fabricated thin films was obtained by field-emission scanning electron microscopy. In addition, atomic force microscope was employed to investigate the surface topography of the films and optical properties of films were determined by UV–Vis spectroscopy. With the increasing the deposition time the optical band gap energy of the as-deposited thin films decrease. With the FeSe thin films as photocatalyst, we decolorized two different chemical structure dyes, Congo Red (CR) and Methylene Blue (MB). A kinetic study has been performed. In addition, the heat treatment at 100 °C and 200 °C has the same behavior as well as the deposition time resulting in the shift in the optical absorption edge towards lower energy and the improvement in photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Thin Solid Films 605, 2 (2016)

    Article  ADS  Google Scholar 

  2. B.R. Cuenya, Thin Solid Films 518, 3127 (2010)

    Article  ADS  Google Scholar 

  3. J. Dong, H. Xu, F. Zhang, C. Chen, L. Liu, G. Wu, Appl. Catal. A 470, 294 (2014)

    Article  Google Scholar 

  4. M. Janczarek, A. Zielinska-Jurek, I. Markowska, J. Hupka, Photochem. Photobiol. Sci. 14, 591 (2015)

    Article  Google Scholar 

  5. Y. Chen, G.-F. Huang, W.-Q. Huang, L.-L. Wang, Y. Tian, Z.-L. Ma, Z.-M. Yang, Mater. Lett. 75, 221 (2012)

    Article  Google Scholar 

  6. G. Poongodi, P. Anandan, R.M. Kumar, R. Jayavel, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 237 (2015)

    Article  ADS  Google Scholar 

  7. R.M. Nair, M.A. Khadar, S.S. Kumar, M. Rajalakshmi, A.K. Arora, K.G.M. Nair, Nucl. Instrum. Methods Phys. Res. Sect. B 254, 131 (2007)

    Article  ADS  Google Scholar 

  8. R.B. Kale, C.D. Lokhande, J. Phys. Chem. B 109, 20288 (2005)

    Article  Google Scholar 

  9. S.I. Mogal, M. Mishra, V.G. Gandhi, R.J. Tayade, Mater. Sci. Forum 734, 364 (2013)

    Article  Google Scholar 

  10. P.P. Hankare, P.A. Chate, S.D. Delekar, M.R. Asabe, I.S. Mulla, J. Phys. Chem. Solids 67, 2310 (2006)

    Article  ADS  Google Scholar 

  11. P. Sohrabi, S. Daneshmandi, H. Salamati, M. Ranjbar, Thin Solid Films 571, Part 1, 180 (2014)

    Article  ADS  Google Scholar 

  12. S.M. Pawar, B.S. Pawar, J.H. Kim, O.-S. Joo, C.D. Lokhande, Curr. Appl. Phys. 11, 117 (2011)

    Article  ADS  Google Scholar 

  13. J. Yu, X. Zhao, Q. Zhao, Thin Solid Films 379, 7 (2000)

    Article  ADS  Google Scholar 

  14. R.S. Sonawane, B.B. Kale, M.K. Dongare, Mater. Chem. Phys. 85, 52 (2004)

    Article  Google Scholar 

  15. W. Qiu, M. Xu, X. Yang, F. Chen, Y. Nan, J. Zhang, H. Iwai, H. Chen, J. Mater. Chem. 21, 13327 (2011)

    Article  Google Scholar 

  16. R.A. Hussain, A. Badshah, M.D. Khan, N. Haider, B. Lal, S.I. Khan, A. Shah, Mater. Chem. Phys. 159, 152 (2015)

    Article  Google Scholar 

  17. C.D. Lokhande, P.M. Gondkar, R.S. Mane, V.R. Shinde, S.-H. Han, J. Alloys Compd. 475, 304 (2009)

    Article  Google Scholar 

  18. A.A. Aref, L. Xiong, N. Yan, A.M. Abdulkarem, Y. Yu, Mater. Chem. Phys. 127, 433 (2011)

    Article  Google Scholar 

  19. J. Sultana, S. Paul, A. Karmakar, R. Yi, G.K. Dalapati, S. Chattopadhyay, Appl. Surf. Sci. 418, 380 (2017)

    Article  ADS  Google Scholar 

  20. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 65, 1 (2000)

    Article  Google Scholar 

  21. J.N. Ximello-Quiebras, G. Contreras-Puente, J. Aguilar-Hernández, G. Santana-Rodriguez, A. Arias-Carbajal Readigos, Sol. Energy Mater. Sol. Cells 82, 263 (2004)

    Article  Google Scholar 

  22. H.M. Pathan, B.R. Sankapal, J.D. Desai, C.D. Lokhande, Mater. Chem. Phys. 78, 11 (2003)

    Article  Google Scholar 

  23. S. Erat, H. Metin, M. Arı, Mater. Chem. Phys. 111, 114 (2008)

    Article  Google Scholar 

  24. J.-F. Zhao, J.-M. Song, C.-C. Liu, B.-H. Liu, H.-L. Niu, C.-J. Mao, S.-Y. Zhang, Y.-H. Shen, Z.-P. Zhang, CrystEngComm 13, 5681 (2011)

    Article  Google Scholar 

  25. A.K. Dutta, S.K. Maji, D.N. Srivastava, A. Mondal, P. Biswas, P. Paul, B. Adhikary, ACS Appl. Mater. Interfaces 4, 1919 (2012)

    Article  Google Scholar 

  26. A.R. Patil, V.N. Patil, P.N. Bhosale, L.P. Deshmukh, Mater. Chem. Phys. 65, 266 (2000)

    Article  Google Scholar 

  27. S.R. Kang, S.W. Shin, D.S. Choi, A.V. Moholkar, J.-H. Moon, J.H. Kim, Curr. Appl. Phys. 10, S473 (2010)

    Article  ADS  Google Scholar 

  28. I.P. O'Hare, K. Govender, P. O'Brien, D. Smyth-Boyle, MRS Proc. 668, H8.15 (2001)

    Article  Google Scholar 

  29. A.U. Ubale, Y.S. Sakhare, M.R. Belkedkar, A. Singh, Mater Res Bull 48, 863 (2013)

    Article  Google Scholar 

  30. N. Hamdadou, J.C. Bernède, A. Khelil, J. Cryst. Growth 241, 313 (2002)

    Article  ADS  Google Scholar 

  31. N. Ghobadi, J. Mater. Sci. Mater. Electron. 27, 8951 (2016)

    Article  Google Scholar 

  32. S.M. Pawar, A.V. Moholkar, U.B. Suryavanshi, K.Y. Rajpure, C.H. Bhosale, Sol. Energy Mater. Sol. Cells 91, 560 (2007)

    Article  Google Scholar 

  33. S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y. Deak Kim, T. Kim, Vacuum 83, 1066 (2009)

    Article  ADS  Google Scholar 

  34. E. Gholami Hatam, N. Ghobadi, Mater. Sci. Semicond. Process. 43, 177 (2016)

    Article  Google Scholar 

  35. N. Ghobadi, T. Akbari Badakhshan, Optik 126, 4557 (2015)

    Article  ADS  Google Scholar 

  36. R.A. Hussain, A. Badshah, S. Marwat, F. Yasmin, M.N. Tahir, J. Organomet. Chem. 769, 58 (2014)

    Article  Google Scholar 

  37. B. Liu, X. Zhao, C. Terashima, A. Fujishima, K. Nakata, Phys. Chem. Chem. Phys. 16, 8751 (2014)

    Article  Google Scholar 

  38. S.H. Mohamed, J. Phys. D Appl. Phys. 43, 035406 (2010)

    Article  ADS  Google Scholar 

  39. J. Lv, W. Gong, K. Huang, J. Zhu, F. Meng, X. Song, Z. Sun, Superlattices Microstruct. 50, 98 (2011)

    Article  ADS  Google Scholar 

  40. S.-H. Wang, T.-K. Chen, K.K. Rao, M.-S. Wong, Appl. Catal. B 76, 328 (2007)

    Article  Google Scholar 

  41. N. Miranda-García, S. Suárez, M.I. Maldonado, S. Malato, B. Sánchez, Catal. Today 230, 27 (2014)

    Article  Google Scholar 

  42. D.D. Dionysiou, M.T. Suidan, I. Baudin, J.-M. Laı̂né, Appl. Catal. B Environ. 50, 259 (2004)

    Article  Google Scholar 

  43. R. Akbarzadeh, S.B. Umbarkar, R.S. Sonawane, S. Takle, M.K. Dongare, Appl. Catal. A 374, 103 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Ghobadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi, P., Ghobadi, N. Optical and photocatalytic behaviors of iron selenide thin films grown by chemical bath deposition versus deposition time and annealing temperature. Appl. Phys. A 125, 620 (2019). https://doi.org/10.1007/s00339-019-2919-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2919-8

Navigation