Skip to main content
Log in

High thermoelectric performance and low thermal conductivity in Cu2-xNaxSe bulk materials with micro-pores

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cu2Se has been considered as a promising thermoelectric material due to its unique structure and excellent performance. Herein, a series of Cu2-xNaxSe (x = 0, 0.01, 0.02, 0.03, and 0.04) polycrystalline samples were synthesized by combining hydrothermal synthesis and hot pressing to investigate the effects of Na-doping on the microstructure and thermoelectric properties of Cu2Se. Compared with the pristine Cu2Se, the Na-doping introduces numerous micro-pores that can optimize the thermal transport performance by strong phonon scattering effects of interfaces between the micro-pores and grains. The doped samples have excellent electrical properties and low thermal conductivity. The maximum value of ZT = 2.1 is obtained at 973 K for the Cu1.96Na0.04Se sample with nominal composition. The results confirm that introducing Na into Cu2Se is an effective and convenient strategy to improve the thermoelectric performance of the Cu2Se alloy by decreasing the lattice thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.E. Bell, Science 321, 1457–1461 (2008)

    ADS  Google Scholar 

  2. L. Yang, Z.-G. Chen, M.S. Dargusch, J. Zou, Adv. Energy Mater. 8, 1701797 (2018)

    Article  Google Scholar 

  3. K. Biswas, J. He, I.D. Blum, C.I. Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414–418 (2012)

    Article  ADS  Google Scholar 

  4. R. Fitriani, B.D. Ovik, M.C. Long, M. Barma, M.F.M. Riaz, S.M. Sabri, R. Said, R. Saidur, Renew. Sust. Energy Rev. 64, 635–659 (2016)

    Article  Google Scholar 

  5. Z.-G. Chen, X. Shi, L.-D. Zhao, J. Zou, High-performance SnSe thermoelectric materials: progress and future challenge. Prog. Mater. Sci. 97, 283–346 (2018)

    Article  Google Scholar 

  6. G.A. Slack, Solid State Phys. Elsevier 34, 1–71 (1979)

    Article  Google Scholar 

  7. K. Zhao, H. Duan, N. Raghavendra, P. Qiu, Y. Zeng, W. Zhang, J. Yang, X. Shi, L. Chen, Adv. Mater 29, 1701148 (2017)

    Article  Google Scholar 

  8. Z.H. Ge, X. Liu, D. Feng, J. Lin, J. He, Adv. Energy Mater. 6, 1600607 (2016)

    Article  Google Scholar 

  9. H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Nat. Mater. 11, 422–425 (2012)

    Article  ADS  Google Scholar 

  10. T.P. Bailey, S. Hui, H. Xie, A. Olvera, P.F.P. Poudeu, X. Tang, C. Uher, J. Mater. Chem. A 4, 17225–17235 (2016)

    Article  Google Scholar 

  11. P. Qiu, M.T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S.M. Haile, W.G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen, G.J. Snyder, Nat. Commun. 9, 2910 (2018)

    Article  ADS  Google Scholar 

  12. D. Byeon, R. Sobota, K. Delime-Codrin, S. Choi, K. Hirata, M. Adachi, M. Kiyama, T. Matsuura, Y. Yamamoto, M. Matsunami, T. Takeuchi, Nat. Commun. 10, 72 (2019)

    Article  ADS  Google Scholar 

  13. R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.-Y. Chou, M.T. Agne, J. He, G.J. Snyder, X. Shi, L. Chen, Energy Environ. Sci. 10, 1928–1935 (2017)

    Article  Google Scholar 

  14. K. Zhao, C. Zhu, P. Qiu, A.B. Blichfeld, E. Eikeland, D. Ren, B.B. Iversen, F. Xu, X. Shi, L. Chen, Nano Energy 42, 43–50 (2017)

    Article  Google Scholar 

  15. Y.B. Zhu, B.P. Zhang, Y. Liu, Phys. Chem. Chem. Phys. 19, 27664 (2017)

    Article  Google Scholar 

  16. L. Zhao, S.M.K.N. Islam, J. Wang, D.L. Cortie, X. Wang, Z. Cheng, J. Wang, N. Ye, S. Dou, X. Shi, L. Chen, G.J. Snyder, X. Wang, Nano Energy 41, 164–171 (2017)

    Article  Google Scholar 

  17. L. Yang, Z.G. Chen, G. Han, M. Hong, Y. Zou, J. Zou, Nano Energy 16, 367–374 (2015)

    Article  Google Scholar 

  18. F. Gao, S.L. Leng, Z. Zhu, X.J. Li, X. Hu, H.Z. Song, J. Electron. Mater. 47, 2454–2460 (2018)

    Article  ADS  Google Scholar 

  19. E. Li, S. Wang, Z. Zhu, R. Cao, X. Hu, H. Song, Int. J. Mod. Phys. B 32, 1850087 (2018)

    Article  ADS  Google Scholar 

  20. B. Yu, W. Liu, S. Chen, H. Wang, H. Wang, G. Chen, Z. Ren, Nano Energy 1, 472–478 (2012)

    Article  Google Scholar 

  21. M.Y. Tafti, S. Ballikaya, A.M. Khachatourian, M. Noroozi, M.S. Saleemi, L. Han, N.V. Nong, T. Bailey, C. Uher, M.S. Toprak, RSC Adv. 6, 111457 (2016)

    Article  Google Scholar 

  22. Z. Zhu, Y. Zhang, H. Song, X. Li, Appl. Phys. A 124, 747 (2018)

    Article  ADS  Google Scholar 

  23. A.A. Olvera, N.A. Moroz, P. Sahoo, P. Ren, T.P. Bailey, A.A. Page, C. Uher, P.F.P. Poudeu, Energy Environ. Sci. 10, 1668–1676 (2017)

    Article  Google Scholar 

  24. Z. Chen, Z. Jian, W. Li, Y. Chang, B. Ge, R. Hanus, J. Yang, Y. Chen, M. Huang, G.J. Snyder, Y. Pei, Adv. Mater. 29, 1606768 (2017)

    Article  Google Scholar 

  25. W. Gao, H. Chai, F. Wu, X. Li, X. Hu, H. Song, Ceram. Int. 43, 5723–5727 (2017)

    Article  Google Scholar 

  26. W. Gao, G. Wang, X. Li, X. Hu, H. Song, Int. J. Mod. Phys. B 31, 1750042 (2017)

    Article  ADS  Google Scholar 

  27. Q. He, S. Li, F. Gao, Z. Zhu, X. Hu, H. Song, Mod. Phys. Lett. B 29, 1550159 (2015)

    Article  ADS  Google Scholar 

  28. L.D. Zhao, G. Tan, S. Hao, J. He, Y. Pei, H. Chi, H. Wang, S. Gong, H. Xu, V.P. Dravid, Science 351, 141–144 (2016)

    Article  ADS  Google Scholar 

  29. K. Peng, X. Lu, H. Zhan, S. Hui, X. Tang, G. Wang, J. Dai, C. Uher, G. Wang, X. Zhou, Energy Environ. Sci. 9, 454–460 (2016)

    Article  Google Scholar 

  30. Y. Jin, M.-K. Han, S.-J. Kim, Appl. Sci. 8, 12 (2018)

    Article  Google Scholar 

  31. J. Yu, K. Zhao, P. Qiu, X. Shi, L. Chen, Ceram. Int. 43, 11142–11148 (2017)

    Article  Google Scholar 

  32. X. Wang, F. Lv, T. Li, Y. Han, Z. Yi, M. Liu, J. Chang, C. Wu, ACS Nano 11, 11337–11349 (2017)

    Article  Google Scholar 

  33. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  ADS  Google Scholar 

  34. Q. Hu, Z. Zhu, Y. Zhang, X. Li, H. Song, Y. Zhang, J. Mater. Chem. A 6, 23417–23424 (2018)

    Article  Google Scholar 

  35. Z. Zhu, Y. Zhang, H. Song, X. Li, Appl. Phys. A 124, 871 (2018)

    Article  ADS  Google Scholar 

  36. Z. Zhu, Y.W. Zhang, H.Z. Song, X.J. Li, J. Electron. Mater. 47, 7514–7519 (2018)

    Article  ADS  Google Scholar 

  37. S.D. Kang, S.A. Danilkin, U. Aydemir, M. Avdeev, A. Studer, G.J. Snyder, N. J. Phys. 18, 013024 (2016)

    Article  Google Scholar 

  38. X. Zhang, L.D. Zhao, J. Materiomics 1, 92–105 (2015)

    Article  Google Scholar 

  39. R. Cao, E. Li, Q. Hu, Z. Zhu, Y. Zhang, X. Li, X. Hu, H. Song, Appl. Phys. A 124, 669 (2018)

    Article  ADS  Google Scholar 

  40. Q. Hu, K. Wang, Y. Zhang, X. Li, H. Song, Mater. Res. Express 5, 045510 (2018)

    Article  ADS  Google Scholar 

  41. R. Cao, Z. Zhu, X. Li, X. Hu, H. Song, Appl. Phys. A 125, 126 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant No. 61774136), and the China and Henan Postdoctoral Science Foundation (Grant Nos. 2017M620303 and 2018M630833).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongzhang Song or Xin-Jian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Zhang, Y., Song, H. et al. High thermoelectric performance and low thermal conductivity in Cu2-xNaxSe bulk materials with micro-pores. Appl. Phys. A 125, 572 (2019). https://doi.org/10.1007/s00339-019-2870-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2870-8

Navigation