Skip to main content
Log in

Bending and buckling analyses of BiTiO3–CoFe2O4 nanoplates based on nonlocal strain gradient and modified couple stress hypotheses: rate of surface layers variations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present article, the bending and buckling analyses of a rectangular BiTiO3–CoFe2O4 nanoplate are examined based on the nonlocal strain gradient and modified couple stress hypotheses to be able to analyze the rate of surface layers variations. The BiTiO3–CoFe2O4 nanoplate is capable of converting magnetism, electricity, thermal, and elasticity energies from one form to another form. The refined plate hypothesis is utilized to develop the governing equations; subsequently, the principle of virtual work is used to derive the relevant equilibrium equations and then, an analytical solution is employed to solve those obtained equations. The present nanoplate is under diverse external in-plane loads including magnetic, electric, thermal, and mechanical forces. The proposed model is validated by those previously accessible results in the literature. One of the most significant results of the current research is that the nonlocal parameter could apply an opposite effect on the rate of surface layers variations when it compares with the strain gradient and modified couple stress parameters. Moreover, the influence of small-scale parameters on the rate of surface layers variations in the bending problem is exactly opposite to the buckling case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Palneedi, V. Annapureddy, S. Priya, J. Ryu, Status and perspectives of multiferroic magnetoelectric composite materials and applications. Actuators 5, 1–31 (2016)

    Article  Google Scholar 

  2. Z. Chu, M.J. Pourhosseini Asl, S. Dong, Review of multi-layered magnetoelectric composite materials and devices applications. J. Phys. D Appl. Phys. 51, 243001 (2018)

    Article  ADS  Google Scholar 

  3. C.M. Leung, J. Li, D. Viehland, X. Zhuang, A review on applications of magnetoelectric composites: from heterostructural uncooled magnetic sensors, energy harvesters to highly efficient power converters. J. Phys. D Appl. Phys. 51, 263002 (2018)

    Article  ADS  Google Scholar 

  4. J. Van Den Boomgaard, D.R. Terrell, R.A.J. Born, H.F.J.I. Giller, An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9, 1705–1709 (1974)

    Article  ADS  Google Scholar 

  5. M. Karimi, H.R. Mirdamadi, A.R. Shahidi, Shear vibration and buckling of double-layer orthotropic nanoplates based on RPT resting on elastic foundations by DQM including surface effects. Microsyst. Technol. 23, 765–797 (2017)

    Article  Google Scholar 

  6. M. Karimi, A.R. Shahidi, Buckling analysis of skew magneto-electro-thermo-elastic nanoplates considering surface energy layers and utilizing the Galerkin method. Appl. Phys. A 124, 681 (2018)

    Article  ADS  Google Scholar 

  7. M. Karimi, A.R. Shahidi, S. Ziaei-Rad, Surface layer and nonlocal parameter effects on the in-phase and out-of-phase natural frequencies of a double-layer piezoelectric nanoplate under thermo-electro-mechanical loadings. Microsyst. Technol. 23, 4903–4915 (2017)

    Article  Google Scholar 

  8. M. Karimi, H.A. Haddad, A.R. Shahidi, Combining surface effects and non-local two variable refined plate theories on the shear/biaxial buckling and vibration of silver nanoplates. Micro Nano Lett. 10, 276–281 (2015)

    Article  Google Scholar 

  9. M. Karimi, M.H. Shokrani, A.R. Shahidi, Size-dependent free vibration analysis of rectangular nanoplates with the consideration of surface effects using finite difference method. J. Appl. Comput. Mech. 1, 122–133 (2015)

    Google Scholar 

  10. M. Malikan, F. Tornabene, R. Dimitri, Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Mater. Res. Express 5, 095006 (2018)

    Article  ADS  Google Scholar 

  11. D. Karličić, P. Kozić, S. Adhikari, Dynamic stability of a nonlinear multiple-nanobeam system. Nonlinear Dyn. 93, 1495–1517 (2018)

    Article  Google Scholar 

  12. M. Karimi, A.R. Shahidi, Finite difference method for sixth order derivatives of differential equations in buckling of nanoplates due to coupled surface energy and non-local elasticity theories’. Int. J. Nano Dimens. 6, 525–538 (2015)

    Google Scholar 

  13. Ç. Demir, Ö. Civalek, On the analysis of microbeams. Int. J. Eng. Sci. 121, 14–33 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ö. Civalek, A.K. Baltacıoğlu, Vibration of carbon nanotube reinforced composite (CNTRC) annular sector plates by discrete singular convolution method. Compos. Struct. 203, 458–465 (2018)

    Article  Google Scholar 

  15. R.A. Arpanahi, S. Hosseini-Hashemi, S. Rahmanian, S.H. Hashemi, A. Ahmadi-Savadkoohia, Nonlocal surface energy effect on free vibration behavior of nanoplates submerged in incompressible fluid. Thin Walled Struct. 143, 106212 (2019)

    Article  Google Scholar 

  16. M.H. Shokrani, M. Karimi, M.S. Tehrani, H.R. Mirdamadi, Buckling analysis of double-orthotropic nanoplates embedded in elastic media based on non-local two-variable refined plate theory using the GDQ method. J. Braz. Soc. Mech. Sci. Eng. 38, 2589–2606 (2016)

    Article  Google Scholar 

  17. M.R. Farajpour, A.R. Shahidi, A. Farajpour, Influences of non-uniform initial stresses on vibration of small-scale sheets reinforced by shape memory alloy nanofibers. Eur. Phys. J. Plus 134, 218 (2019)

    Article  Google Scholar 

  18. M. Sobhy, Hygrothermal vibration of orthotropic double-layered graphene sheets embedded in an elastic medium using the two-variable plate theory. Appl. Math. Model. 40, 85–99 (2016)

    Article  MathSciNet  Google Scholar 

  19. M. Karimi, S. Rafieian, A comprehensive investigation into the impact of nonlocal strain gradient and modified couple stress models on the rates of surface energy layers of BiTiO3–CoFe2O4 nanoplates: a vibration analysis. Mater. Res. Express 6, 075038 (2019)

    Article  ADS  Google Scholar 

  20. M. Sobhy, A.M. Zenkour, The modified couple stress model for bending of normal deformable viscoelastic nanobeams resting on visco-Pasternak foundations. Mech. Adv. Mater. Struct. (2018). https://doi.org/10.1080/15376494.2018.1482579

    Article  Google Scholar 

  21. C.L. Thanh, L.V. Tran, T. Vu-Huu, M. Abdel-Wahabcde, The size-dependent thermal bending and buckling analyses of composite laminate microplate based on new modified couple stress theory and isogeometric analysis. Comput. Methods Appl. Mech. Eng. 350, 337–361 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  22. J. Kim, K.K. Zur, J.N. Reddy, Bending, free vibration, and buckling of modified couples stress-based functionally graded porous micro-plates. Compos. Struct. 209, 879–888 (2019)

    Article  Google Scholar 

  23. M. Karimi, H.R. Mirdamadi, A.R. Shahidi, Positive and negative surface effects on the buckling and vibration of rectangular nanoplates under biaxial and shear in-plane loadings based on nonlocal elasticity theory. J. Braz. Soc. Mech. Sci. Eng. 39, 1391–1404 (2017)

    Article  Google Scholar 

  24. M.R. Farajpour, A.R. Shahidi, A. Farajpour, Elastic waves in fluid-conveying carbon nanotubes under magneto-hygro-mechanical loads via a two-phase local/nonlocal mixture model. Mater. Res. Express 6, 0850a8 (2019)

    Article  Google Scholar 

  25. M. Karimi, Rate of surface energy changes on the wave propagation analysis of METE nanoplates based on couple stress small-scale and nonlocal strain gradient theories. Mater. Res. Express 6, 085087 (2019)

    Article  ADS  Google Scholar 

  26. S. Ebrahiminejad, J. Marzbanrad, M. Boreiry, G.R. Shaghaghi, On the electro-thermo-mechanical vibration characteristics of elastically restrained functionally graded nanobeams using differential transformation method. Appl. Phys. A 124, 800 (2018)

    Article  ADS  Google Scholar 

  27. M. Karimi, A.R. Shahidi, Finite difference method for biaxial and uniaxial buckling of rectangular silver nanoplates resting on elastic foundations in thermal environments based on surface stress and nonlocal elasticity theories. J. Solid Mech. 8, 719–733 (2016)

    Google Scholar 

  28. M. Karimi, A.R. Shahidi, A general comparison the surface layer degree on the out-of-phase and in-phase vibration behavior of a skew double-layer magneto-electro-thermo-elastic nanoplate. Appl. Phys. A 125, 106 (2019)

    Article  ADS  Google Scholar 

  29. M. Karimiasl, K. Kargarfard, F. Ebrahimi, Buckling of magneto-electro-hygro-thermal piezoelectric nanoplates system embedded in a visco-Pasternak medium based on nonlocal theory. Microsyst. Technol. 25, 1031–1042 (2019)

    Article  Google Scholar 

  30. R. Gholami, R. Ansari, Y. Gholami, Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates. Mater. Res. Express 4, 065702 (2017)

    Article  ADS  Google Scholar 

  31. Z.Q. Tan, Y.C. Chen, Size-dependent electro-thermo-mechanical analysis of multilayer cantilever microactuators by Joule heating using the modified couple stress theory. Compos. B Eng. 161, 183–189 (2019)

    Article  Google Scholar 

  32. S. Sahmani, M.M. Aghdam, Nonlocal strain gradient shell model for axial buckling and postbuckling analysis of magneto-electro-elastic composite nanoshells. Compos. B Eng. 132, 258–274 (2018)

    Article  Google Scholar 

  33. M. Karimi, A.R. Shahidi, Comparing magnitudes of surface energy stress in synchronous and asynchronous bending/buckling analysis of slanting double-layer METE nanoplates. Appl. Phys. A 125, 154 (2019)

    Article  ADS  Google Scholar 

  34. M. Karimi, A.R. Shahidi, Thermo-mechanical vibration, buckling, and bending of orthotropic graphene sheets based on nonlocal two-variable refined plate theory using finite difference method considering surface energy effects. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 231, 111–130 (2017)

    Google Scholar 

  35. M. Karimi, A.R. Shahidi, Nonlocal, refined plate, and surface effects theories used to analyze free vibration of magnetoelectroelastic nanoplates under thermo-mechanical and shear loadings. Appl. Phys. A 123, 304 (2017)

    Article  ADS  Google Scholar 

  36. L. Lu, X. Guo, J. Zhao, A unified size-dependent plate model based on nonlocal strain gradient theory including surface effects. Appl. Math. Model. 68, 583–602 (2019)

    Article  MathSciNet  Google Scholar 

  37. W.Y. Jung, S.C. Han, W.T. Park, A modified couple stress theory for buckling analysis of S-FGM nanoplates embedded in Pasternak elastic medium. Compos. B Eng. 60, 746–756 (2014)

    Article  Google Scholar 

  38. A. Farajpour, M.R. Haeri Yazdi, A. Rastgoo, M. Mohammadi, A higher-order nonlocal strain gradient plate model for buckling of orthotropic nanoplates in thermal environment. Acta Mech. 227, 1849–1867 (2016)

    Article  MathSciNet  Google Scholar 

  39. B. Akgöz, Ö. Civalek, Modeling and analysis of micro-sized plates resting on elastic medium using the modified couple stress theory. Meccanica 48, 863–873 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Karimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, M., Farajpour, M.R. Bending and buckling analyses of BiTiO3–CoFe2O4 nanoplates based on nonlocal strain gradient and modified couple stress hypotheses: rate of surface layers variations. Appl. Phys. A 125, 530 (2019). https://doi.org/10.1007/s00339-019-2811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2811-6

Navigation