Skip to main content
Log in

Performance estimation of junctionless field effect diode

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

For the first time in this study a junctionless field effect diode (JL-FED) is proposed and investigated using 2D simulations. In this structure, the advantages of junctionless field effect transistor (JL-FET) and FED are combined together. Unlike a FED, a JL-FED device can be turned on without applied biases to the control gates. JL-FED device with channel lengths less than 15 nm could not be turned off due to the short channel effects (SCEs). We have proposed a new structure, namely modified JL-FED (MJ-FED), to reduce the issues of SCEs. All structural parameters of MJL-FED device are quite the same as the JL-FED device, except its control gates work function. Our simulation results demonstrate that OFF-state current of MJL-FED with 10 nm channel length is approximately six orders of magnitude lower than that of JL-FED. Moreover, simulation results obtained here show that the MJL-FED with 22 nm channel length exhibit ION/IOFF ratio of ~ 3 × 1014 and a subthreshold swing (SS) of ~ 78 mV/decade, which are considerably improved as compared to those of reported so far in the literature. As a result, MJL-FED is a promising candidate for a switching performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. F. Raissii, A brief analysis of the field effect diode and breakdown transistor. IEEE Trans. Electron. Devices 43(2), 362–365 (1996)

    Article  ADS  Google Scholar 

  2. N. Manavizadeh, F. Raissi, E.A. Soleimani, M. Pourfath, S. Selberherr, Performance assessment of nanoscale field-effect diodes. IEEE Trans. Electron. Devices 58(8), 2378–2384 (2011)

    Article  ADS  Google Scholar 

  3. M. Vadizadeh, M. Fathipour, G.H. Darvish, Silicon on raised insulator field effect diode (SORI-FED) for alleviating scaling problem in fed. Int. J. Mod. Phys. B 28(5), 1450038 (2014)

    Article  ADS  Google Scholar 

  4. M. Vadizadeh, Improving gate delay and I ON/IOFF in nanoscale heterostructure field effect diode (H-FED) by using heavy doped layers in the channel. Appl. Phys. A 122(4), 469 (2016)

    Article  Google Scholar 

  5. M. Vadizadeh, Dual material gate nanowire field effect diode (DMG-NWFED): operating principle and properties. Microelectron. J. 71, 1–7 (2018)

    Article  Google Scholar 

  6. A. Sotoudeh, M. Amirmazlaghani, Graphene-based field effect diode. Superlat Microstruct 120, 828–836 (2018)

    Article  ADS  Google Scholar 

  7. B.J. Touchaei, M. Negin, Impact of scaling voltage and size on the performance of side-contacted field effect diode. Superlatt Microstruct 117, 406–412 (2018)

    Article  ADS  Google Scholar 

  8. A.Z. Badwan, Z. Chbili, Y. Yang, A.A. Salman, Q. Li, D.E. Ioannou, SOI field-effect diode DRAM cell: design and operation. IEEE Electron. Device Lett. 34(8), 1002–1004 (2013)

    Article  ADS  Google Scholar 

  9. A.Z. Badwan, Z. Chbili, Q. Li, D.E. Ioannou, SOI FED-SRAM cell: structure and operation. IEEE Trans. Electron. Devices 62(9), 2865–2870 (2015)

    Article  ADS  Google Scholar 

  10. I. Sheikhian, F. Raissi, High-speed digital family using field effect diode. Electron. Lett. 39(4), 345–347 (2003)

    Article  Google Scholar 

  11. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’neill, A. Blake, M. White, A.M. Kelleher, Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225 (2010)

    Article  ADS  Google Scholar 

  12. T. Rudenko, A. Nazarov, R. Yu, S. Barraud, K. Cherkaoui, P. Razavi, G. Fagas, Electron mobility in heavily doped junctionless nanowire SOI MOSFETs. Microelectron. Eng. 109, 326–329 (2013)

    Article  Google Scholar 

  13. N. Dehdashti Akhavan, I. Ferain, P. Razavi, R. Yu, J.P. Colinge, Improvement of carrier ballisticity in junctionless nanowire transistors. Appl. Phys. Lett. 98(10), 103510 (2011)

    Article  ADS  Google Scholar 

  14. M. Vadizadeh, Designing a hetrostructure junctionless-field effect transistor (HJL-FET) for high-speed applications. J. Korean Phys. Soc. 71(5), 275–282 (2017)

    Article  ADS  Google Scholar 

  15. M. Vadizadeh, Characteristics of GaAs/GaSb tunnel field-effect transistors without doping junctions: numerical studies. J. Comput. Electron. 17(2), 745–755 (2018)

    Article  Google Scholar 

  16. P.K. Asthana, B. Ghosh, Y. Goswami, B.M. Tripathi, High-speed and low-power ultradeep-submicrometer III–V heterojunctionless tunnel field-effect transistor. IEEE Trans. Electron. Devices 61, 479–486 (2014)

    Article  ADS  Google Scholar 

  17. S. Ramaswamy, Mamidala JK (2014) Junctionless impact ionization MOS: proposal and investigation. IEEE Trans. Electron. Devices. 61(12), 4295–4298 (2014)

    Article  ADS  Google Scholar 

  18. P. Ranade, H. Takeuchi, T.J. King, C. Hu, Work function engineering of molybdenum gate electrodes by nitrogen implantation. Electrochem. Solid State Lett. 4(11), G85–G87 (2001)

    Article  Google Scholar 

  19. J.M. Sallese, F. Jazaeri, L. Barbut, N. Chevillon, C. Lallement, A common core model for junctionless nanowires and symmetric double-gate FETs. IEEE Trans. Electron. Devices 60(12), 4277–4280 (2013)

    Article  ADS  Google Scholar 

  20. H. Tsuchiya, A. Svizhenko, M.P. Anantram, M. Ogawa, T. Miyoshi, Comparison of non-equilibrium Green’s function and quantum-corrected Monte Carlo approaches in nano MOS simulation. J. Comput. Electron. 4(1–2), 35–38 (2005)

    Article  Google Scholar 

  21. M. Luisier, A. Schenk, W. Fichtner, Quantum transport in two-and three-dimensional nanoscale transistors: coupled mode effects in the nonequilibrium Green’s function formalism. J. Appl. Phys. 100(4), 043713 (2006)

    Article  ADS  Google Scholar 

  22. O. Kurniawan, P. Bai, E. Li, Ballistic calculation of nonequilibrium Green’s function in nanoscale devices using finite element method. J. Phys. D Appl. Phys. 42(10), 105109 (2009)

    Article  ADS  Google Scholar 

  23. ATLAS User’s Manual, Device simulation software (Silvaco International, Santa Clara, 2014)

    Google Scholar 

  24. M. Gupta, Ballistic MOSFETs, the ultra-scaled transistors. IEEE Potent. 21(5), 13–16 (2002)

    Article  Google Scholar 

  25. H-E, Jung, S. Mincheol, Surface-roughness-limited mean free path in Si nanowire FETs. arXiv:1304.5597 (2013)

  26. S. Datta, Quantum transport: atom to transistor (Cambridge University Press, Cambridge, 2005)

    Book  Google Scholar 

  27. B.G. Streetman, S.K. Banerjee, Solid state electronic devices, global edn. (Pearson Education, London, 2016)

    Google Scholar 

  28. H. Kawaura, T. Sakamoto, T. Baba, Observation of source-to-drain direct tunneling current in 8 nm gate electrically variable shallow junction metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 76(25), 3810–3812 (2000)

    Article  ADS  Google Scholar 

  29. M.P.V. Kumar, C.Y. Hu, K.H. Kao, Y.J. Lee, T.S. Chao, Impacts of the shell doping profile on the electrical characteristics of junctionless FETs. IEEE Trans. Electron. Devices 62(11), 3541–3546 (2015)

    Article  ADS  Google Scholar 

  30. V.P.-H. Hu, C.-T. Wang, Optimization of III–V heterojunction tunnel FET with non-uniform channel thickness for performance enhancement and ambipolar leakage suppression. Jpn. J. Appl. Phys. 57(4S), 04FD18 (2018)

    Article  Google Scholar 

  31. A.K. Bansal, M. Kumar, C. Gupta, T.B. Hook, A. Dixit, Series resistance reduction with linearity assessment for vertically stacked junctionless accumulation mode nanowire FET. IEEE Trans. Electron. Devices 65(8), 3548–3554 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Vadizadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vadizadeh, M. Performance estimation of junctionless field effect diode. Appl. Phys. A 125, 495 (2019). https://doi.org/10.1007/s00339-019-2788-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2788-1

Navigation