Skip to main content
Log in

Use of beam-shaping optics for wafer-scaled nanopatterning in laser interference lithography

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser interference lithography is a widely used technology for large-area patterning of surfaces on the micro- and nanoscale. It is mostly used for research purposes due to the limited area that can be uniformly patterned due to the Gaussian intensity profile of the laser. In the scope of this work, the lithography system was extended by a freeform refractive glass which provided a spatially uniform energy distribution for a homogenous structuring process. The energy variation of the introduced light was reduced to 2.6% for the exposed area (4 × 9 cm), which is one magnitude lower than the energy variation of a Gaussian beam. With the refractive beam shaper, it was possible to produce a uniform nanopattern with an absolute linewidth variation of 7 nm over an area of 4 × 9 cm2. The structurable area is limited by the mirror size of the Lloyd’s mirror device. The demonstrated LIL system was also able to generate variable light fields from Gaussian to flat-top as well as inverse Gaussian profiles. This paper demonstrates nanopatterning of negative resist with a square homogenous output profile of the beam shaper. The square shape of the beam profile gives the opportunity to efficiently structure substrates with a square shape. Apart from standard silicon-based photolithographic processes, this technique is also attractive for nanopatterning of organic light-emitting diodes on glass or graduated grid structures like polarizers. Consequently, the advantages of the LIL fabrication (high-throughput and low-cost fabrication) are extended by the opportunity to scale the single-exposure process to large areas with only small variations in the detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.-J. Hung, S.-L. Lee, Y.-T. Pan, B.J. Thibeault, L.A. Coldren, J. Vac. Sci. Technol. B (2010). https://doi.org/10.1116/1.3491185

    Article  Google Scholar 

  2. S.-F. Leung, Q. Zhang, F. Xiu, D. Yu, J.C. Ho, D. Li, Z. Fan, J. Vac. Sci. Technol. B (2014). https://doi.org/10.1021/jz500306f

    Article  Google Scholar 

  3. L. Prodan et al. Nanotechnology (2004). https://doi.org/10.1088/0957-4484/15/5/040

    Article  Google Scholar 

  4. J. Buencuerpo, L. Torne, R. Alvaro, J.M. Llorens, M.L. Dotor, J.M. Ripalda, AIP Conf. Proc. (2017). https://doi.org/10.1063/1.5001413

    Article  Google Scholar 

  5. M. Bieda, M. Siebold, A.F. Lasagni, Appl. Surf. Sci. (2016). https://doi.org/10.1016/j.apsusc.2016.06.100

    Article  Google Scholar 

  6. T.B. O’Reilly, H.I. Smith, J. Vac. Sci. Technol. B (2008). https://doi.org/10.1116/1.3013391

    Article  Google Scholar 

  7. K.-H. Kim, Y.-C. Jeong, Opt. Express (2018). https://doi.org/10.1364/OE.26.005711

    Article  Google Scholar 

  8. P. Lalanne, J. Hazart, P. Chavel, C. Edmond, L. Huguette, J. Opt. A Pure Appl. Opt. 1, 215 (1999)

    Article  ADS  Google Scholar 

  9. M. Stroisch, T. Woggon, U. Lemmer, G. Bastian, G. Violakis, S. Pissadakis, Opt. Express (2007). https://doi.org/10.1364/OE.15.003968

    Article  Google Scholar 

  10. T. Ubukata, T. Isoshima, M. Hara, Adv. Mater. (2005). https://doi.org/10.1002/adma.200402080

    Article  Google Scholar 

  11. C. Ye, K.Y. Wong, Y. He, X. Wang, Opt. Express 15, 936–944 (2007)

    Google Scholar 

  12. A. Arriola, A. Rodriguez, N. Perez, T. Tavera, M.J. Withford, A. Fuerbach, S.M. Olaizola, Opt. Mater. Express (2012). https://doi.org/10.1364/OME.2.001571

    Article  Google Scholar 

  13. Y.-J. Hung, H.-J. Chang, P.-C. Chang, J.-J. Lin, T.-C. Kao, J. Vac. Sci. Technol. B (2017). https://doi.org/10.1116/1.4980134

    Article  Google Scholar 

  14. M. Stroisch, T. Woggon, C. Teiwes-Morin, S. Klinkhammer, K. Forberich, A. Gombert, M. Gerken, U. Lemmer, Opt. Express (2010). https://doi.org/10.1364/OE.18.005890

    Article  Google Scholar 

  15. S. Klinkhammer, T. Woggon, U. Geyer, C. Vannahme, S. Dehm, T. Mappes, U. Lemmer, Appl. Phys. B (2009). https://doi.org/10.1007/s00340-009-3789-0

    Article  Google Scholar 

  16. S. Balslev, T. Rasmussen, P. Shi, A. Kristensen, J. Micromech. Microeng. (2005). https://doi.org/10.1088/0960-1317/15/12/030

    Article  Google Scholar 

  17. M. Fina, D. Liu, L. Ren, S.S. Mao, Appl. Phys. A (2011). https://doi.org/10.1007/s00339-011-6616-5

    Article  Google Scholar 

  18. E. Menard, M.A. Meitl, Y. Sun, J.-U. Park, D.J.-L. Shir, Y.-S. Nam, S. Jeon, J.A. Rogers, Chem. Rev. (2007). https://doi.org/10.1021/cr050139y

    Article  Google Scholar 

  19. A.M. Adawi, R. Kullock, J.L. Turner, C. Vasilev, D.G. Lidzey, A. Tahraoui, P.W. Fry, D. Gibson, E. Smith, C. Foden, M. Roberts, F. Qureshi, N. Athanassopoulou, Org. Electron. (2006). https://doi.org/10.1016/j.orgel.2006.02.002

    Article  Google Scholar 

  20. A. Dodabalapur, L.J. Rothberg, R.H. Jordan, T.M. Miller, R.E. Slusher, J.M. Phillips, J. Appl. Phys. (1996). https://doi.org/10.1063/1.363768

    Article  Google Scholar 

  21. N. Takada, T. Tsutsui, S. Saito, Appl. Phys. Lett. (1993). https://doi.org/10.1063/1.110582

    Article  Google Scholar 

  22. C.-H. Tsai, L.-D. Liao, Y.-S. Luo, P.C.-P. Chao, E.-C. Chen, H.-F. Meng, W.-D. Chen, S.-K. Lin, C.-T. Lin, Microelectron. Eng. (2010). https://doi.org/10.1016/j.mee.2009.12.041

    Article  Google Scholar 

  23. L. Petti, M. Rippa, R. Capasso, G. Nenna, A. Mauro, V. De Girolamo Del, A.P. La Ferrara, C. Madathil, Minarini, J. Eur. Opt. Soc. Rapid Publ. (2013). https://doi.org/10.2971/jeos.2013.13002

    Article  Google Scholar 

  24. L. Petti, M. Rippa, R. Capasso, G. Nenna, A.G. de Del Mauro, M.G. Maglione, C. Minarini, Nanotechnology (2013). https://doi.org/10.1088/0957-4484/24/31/315206

    Article  Google Scholar 

  25. S. Noda, M. Fujita, T. Asano, Nat. Photon. (2007). https://doi.org/10.1038/nphoton.2007.141

    Article  Google Scholar 

  26. J.H. Hwang, H.J. Lee, Y.S. Shim, C.H. Park, S.-G. Jung, K.N. Kim, Y.W. Park, B.-K. Ju, Nanoscale (2015). https://doi.org/10.1039/c4nr06547f

    Article  ADS  Google Scholar 

  27. R. Yan, Q. Wang, Optoelectr. Lett. (2006). https://doi.org/10.1007/BF03034018

    Article  Google Scholar 

  28. Y.-J. Hung, P.-C. Chang, Y.-N. Lin, J.-J. Lin, J. Vac. Sci. Technol. B (2016). https://doi.org/10.1116/1.4955172

    Article  Google Scholar 

  29. M. Farhoud, J. Ferrera, A.J. Lochtefeld, T.E. Murphy, M.L. Schattenburg, J. Carter, C.A. Ross, H.I. Smith, J. Vac. Sci. Technol. B (1999). https://doi.org/10.1116/1.590976

    Article  Google Scholar 

  30. H. Korre, C.P. Fucetola, J.A. Johnson, K.K. Berggren, J. Vac. Sci. Technol. B (2010). https://doi.org/10.1116/1.3504498

    Article  Google Scholar 

  31. C.P. Fucetola, H. Korre, K.K. Berggren, J. Vac. Sci. Technol. B (2009). https://doi.org/10.1116/1.3245990

    Article  Google Scholar 

  32. T.B. O’Reilly, H.I. Smith, J. Vac. Sci. Technol. B (2008). https://doi.org/10.1116/1.2825169

    Article  Google Scholar 

  33. A.S. Kewitsch, A. Yariv, Appl. Phys. Lett. (1996). https://doi.org/10.1063/1.116411

    Article  Google Scholar 

  34. M. Zhang, Master Thesis, Auburn University, 05 (2013)

  35. Y.-K. Yang, Y.-X. Wu, T.-H. Lin, C.-W. Yu, C.-C. Fu, In SPIE LASE, San Francisco, California, United States, Saturday 13 February 2016 (SPIE2016), 97360Y (2016)

  36. M.A. de Araújo, R. Silva, E. de Lima, D.P. Pereira, P.C. de Oliveira, Appl. Opt. (2009). https://doi.org/10.1364/AO.48.000393

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Dr. M. Gerngroß and M Schirmer from Allresist GmbH for discussion and the provision of the photoresist and the chemical products. We also want to thank TOPAG Lasertechnik GmbH and U. Rädel for the technical assistance and discussion in terms of the beam shaper. For general discussions and technical assistance, we want to thank Professor J. Grimm and J. Saupe as well as Professor W. Zahn for the support with analytical equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Schondelmaier.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, D., Heimburger, R., Hildebrand, D. et al. Use of beam-shaping optics for wafer-scaled nanopatterning in laser interference lithography. Appl. Phys. A 125, 307 (2019). https://doi.org/10.1007/s00339-019-2538-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2538-4

Navigation