Skip to main content
Log in

Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 \(\upmu \mathrm{m}\)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The theoretical research of the influence of Burstein–Moss effect (the effect of interband absorption saturation in semiconductors) on the processes of photoexcitation and heating of monocrystalline silicon under pulsed laser action with pulse durations in the range from hundreds of femtoseconds to hundreds of nanoseconds at the wavelength near the edge of interband absorption (1.06 \(\upmu\)m) was conducted. It was shown that interband absorption saturation effect has the largest impact for picosecond laser pulses. Taking this effect into account in the model presented in this work allows to bring calculated melting thresholds for silicon in accordance with experimental results for wide range of pulse durations. Also, the influence of the effect of band edges filling by carriers during electron–phonon relaxation on the absorption of the second pulse when irradiating using double-pulse femtosecond laser action technique was studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. O’Neil, K. Li., IEEE J. Sel. Top. Quantum Electron., 15, 462 (2009)

  2. K. Li, M. Sparkes, W. ONeil. IEEE J. Sel. Top. Quantum Electron., 20, 900807 (2014)

  3. P.C. Verburg, L.A. Smillie, G.R.B.E. Romer, B. Haberl, J.E. Bradby, J.S. Williams, A.J. Huis int Veld, Appl. Phys. A. 120, 683 (2015)

  4. O. Haupt, F. Siegel, A. Schoonderbeek, L. Richter, R. Kling, A. Ostendorf, J. Laser Micro/Nanoeng. 3(3), 135 (2008)

    Article  Google Scholar 

  5. K. Venkatakrishnan, N. Sudani, B. Tan, J. Micromechanics. Microeng. 18, 075032 (2008)

    Article  ADS  Google Scholar 

  6. N. Mansour, K. Jamshidi-Ghaleh, D. Ashkenasi, J. Laser Micro/Nanoeng. 1(1), 12 (2006)

    Article  Google Scholar 

  7. D.S. Polyakov, E.B. Yakovlev, Opt. Quantum Electron. 50, 235 (2018)

    Article  Google Scholar 

  8. P.C. Verburg, G.R.B.E. Romer, A.J. Huis int Veld, Appl. Phys. A. 144(4), 1135 (2014)

  9. W. Han, L. Jiang, X. Li, Q. Wang, H. Li, Y. Lu, Optics Express. 22(13), 15820 (2014)

    Article  ADS  Google Scholar 

  10. X. Zhao, Y.C. Shin, Appl. Phys. Lett. 105, 111907 (2014)

    Article  ADS  Google Scholar 

  11. T. Derrien, J. Kruger, T.E. Itina, S. Hohm, A. Rosenfeld, J. Bonse Appl. Phys. A. 117, 77 (2014)

    Article  ADS  Google Scholar 

  12. T. Derrien, J. Kruger, T.E. Itina, S. Hohm, A. Rosenfeld, J. Bonse, Opt. Express 21(24), 29643 (2013)

    Article  ADS  Google Scholar 

  13. H.M. van Dreil, Phys. Rev. B. 35, 8166 (1987)

    Article  ADS  Google Scholar 

  14. A. Ramer, B. Rethfeld, O. Osmani, J. Appl. Phys. 116, 053508 (2014)

    Article  ADS  Google Scholar 

  15. Y. Levy, T. Derrien, N.M. Bulgakova, E. Gurevich, T. Mocek, Appl. Surf. Sci. 374, 157 (2016)

    Article  ADS  Google Scholar 

  16. V.P. Lipp, B. Rethfeld, M.E. Garcia, D.S. Ivanov, Phys, Rev. B. 90, 245306 (2014)

    Article  ADS  Google Scholar 

  17. S.I. Ashitkov, A.V. Ovchinnikov, M.B. Agranat, JEPT Lett. 79, 529 (2004)

    ADS  Google Scholar 

  18. I.A. Vainstein, A.F. Zatsepin, V.S. Kortov, Phys. Solid State. 41(6), 905 (1999)

    Article  ADS  Google Scholar 

  19. K.F. Berggren, B.E. Sernelius, Phys. Rev. B 24(4), 1971 (1981)

    Article  ADS  Google Scholar 

  20. D.S. Polyakov, E.B. Yakovlev, D.S. Ivanov, Tech. Phys. Lett. 43, 247 (2017)

    Article  ADS  Google Scholar 

  21. S. Tao, Y. Zhou, J. Appl. Phys. 106, 123507 (2009)

    Article  ADS  Google Scholar 

  22. H. Garcia, R. Kalyanaraman, J. Phys. B At. Mol. Opt. Phys. 39, 2737 (2006)

  23. A.D. Bristow, N. Rotenberg, H.M. van Driel, Appl. Phys. Lett. 90, 191104 (2007)

    Article  ADS  Google Scholar 

  24. D.S. Polyakov, E.B. Yakovlev, Quantum Electron. 48(3), 255 (2018)

    Article  ADS  Google Scholar 

  25. K. Sokolowski-Tinten, D. von der Linde, Phys. Rev. B. 61, 2643–2650 (2000)

    Article  ADS  Google Scholar 

  26. D.A. Zayarny, A.A. Ionin, S.I. Kudryashov, S.V. Makarov, A.A. Kuchmizhak, O.B. Vitrik, Y.N. Kulchin, JETP Lett. 103, 752 (2016)

    Article  ADS  Google Scholar 

  27. I.W. Boyd, S.C. Moss, T.F. Bogaess, A.L. Smirl, Appl. Phys. Lett. 45(1), 80 (1984)

    Article  ADS  Google Scholar 

  28. J.R. Meyer, M.R. Kruer, F.J. Bartoli, J. Appl. Phys. 51(10), 5513 (1980)

    Article  ADS  Google Scholar 

  29. C. Ma, W.-Y. Ho, R. Walser, M. Becker, Proc. SPIE 1848, 59 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by RFBR Grant #18-32-00839.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Polyakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyakov, D.S., Yakovlev, E.B. Influence of Burstein–Moss effect on photoexcitation and heating of silicon by short and ultrashort laser pulses at wavelength 1.06 \(\upmu \mathrm{m}\). Appl. Phys. A 124, 803 (2018). https://doi.org/10.1007/s00339-018-2225-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2225-x

Navigation