Skip to main content
Log in

Physical properties of nebulized spray pyrolysised SnO2 thin films at different substrate temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Using nebulized spray pyrolysis technique, we investigate tin oxide (SnO2) thin films had been coated with different substrate temperature (300–500 °C) onto microscopic glass substrate. All the prepared films have tetragonal crystalline structure with preferential orientation (110) observed by X-ray diffraction analysis. The reduced strain due to the increase of substrate temperature from 300 to 450 °C increased the average crystalline size from 27.40 to 42.99 nm and then decreased further. All the films display high transmittance in the visible and also in IR region. As the substrate temperature had increased from 300 to 500 °C, the average transmittance of SnO2 thin films varied between 79 and 90%. The energy band gap values had diminished from 3.91 to 3.75 eV by increasing the substrate temperature. The refractive index (n) of these films had increased from 2.11 to 2.32 with increase in substrate temperature from 300 to 450 °C and then decreased further. The optical static and high frequency dielectric constants (εo and ε) have been determined as a role of substrate temperature. The surface morphology of these thin films exhibited polyhedron-shaped grains obtained by scanning electron microscope. Energy dispersive X-ray analysis proved the presence of Sn and O elements in the as-prepared SnO2 films. Hall effect measurements shows that the film had deposited at 450 °C exhibited lowest resistivity 6.53 × 10−3 Ω cm and highest figure of merit 9.14 × 10− 3 (Ω/sq)−1 among all the samples. Activation energy varied between 0.14 and 0.20 eV with the increase of substrate temperature from 300 to 500 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Lotfi Orimi, M. Maghouli, Optik 127, 263–266 (2016)

    Article  ADS  Google Scholar 

  2. B.Thangaraju, Thin Solid Films 402, 71–78 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. T. Serin, N. Serin, S. Karadeniz, H. Sari, N. Tugluoglu, O. Pakma, J. Non-Cryst. Solids 352, 209–215 (2006)

    Article  ADS  Google Scholar 

  4. A.V. Moholkar, S.M. Pawar, K.Y. Rajpure, C.H. Bhosale, Mater. Lett. 61, 3030–3036 (2007)

    Article  Google Scholar 

  5. A. Goetzberger, C. Hebling, Sol. Energy Mater. Sol. Cells 62, 1–19 (2000)

    Article  Google Scholar 

  6. S.N. Pusawale, P.R. Deshmukh, C.D. Lokhande, Appl. Surf. Sci. 257, 9498–9502 (2011)

    Article  ADS  Google Scholar 

  7. D. Vaufrey, M. Ben khalifa, M.P. Besland, C. Sandu, M.G. Balanchin, V. Teodorescu, Synth. Met. 127, 207–211 (2002)

    Article  Google Scholar 

  8. K.L. Chopra, S.R. Dass, Thin film solar cells (Plenum Press, New Yourk, 1983)

    Book  Google Scholar 

  9. S. Boubaker Benhaoua, A. Abbas, A. Rahal, M.S.Aida Benhaoua, Superlattices Microstruct. 83, 78–88 (2015)

    Article  ADS  Google Scholar 

  10. W. Yu, M. Chun, X. Sun, H. Li, Nanotechnology 13, 565–569 (2002)

    Article  ADS  Google Scholar 

  11. J. Soon Min, Jeong, Mater. Sci. Semicond. Process. 16, 1267–1270 (2013)

    Article  Google Scholar 

  12. S. Gnanam, V. Rajendran, J. Sol-Gel Sci. Technol. 56, 128–133 (2010)

    Article  Google Scholar 

  13. C. Luan, Z. Zhu, W. Mi, J. Ma, Vacuum 99, 110–114 (2014)

    Article  ADS  Google Scholar 

  14. M. Dengbaoleer Ao, J. Ichimura, Non-Cryst. Solids 358, 2470–2473 (2012)

    Article  Google Scholar 

  15. G.W. Kim, C.H. Sung, M.S. Anwar, Y.J. Seo, S.N. Heo, K.Y. Park, T.K. Song, B.H. Koo, Curr. Appl. Phys. 12, s21–s24 (2012)

    Article  ADS  Google Scholar 

  16. D.-K. Lee, Z. Wan, J.-S. Bae, Han-Bo-Ram Lee, J.-H. Ahn, S.-D. Kim, J. Kim, S.-H. Kwon, Mater. Lett. 166, 163–166 (2016)

    Article  Google Scholar 

  17. A.F. Khan, M. Mehmood, M. Aslam, M. Ashraf, Appl. Surf. Sci. 256, 2252–2258 (2010)

    Article  ADS  Google Scholar 

  18. A.F. Khan, M. Mehmood, A.M. Rana, M.T. Bhatti, Appl. Surf. Sci. 255, 8562–8565 (2009)

    Article  ADS  Google Scholar 

  19. M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M. Shokooh-Saremi, Solid State Sci. 1, 233–239 (2009)

    Article  ADS  Google Scholar 

  20. N. Anitha, M. Anitha, K. Saravanakumar, S. Valanarasu, L. Amalraj, J. Phys. Chem. Solids 119, 9–18 (2018)

    Article  ADS  Google Scholar 

  21. J. Raj Mohamed, C. Sanjeeviraja, L. Amalraj, J. Mater. Sci. Mater. Electron. 27, 4437–4446 (2016)

    Article  Google Scholar 

  22. R. Mariappan, V. Ponnuswamy, P. Suresh, R. Suresh, M. Ragavendar, C. Sankar, Mater. Sci. Semicond. Process. 16, 825–832 (2013)

    Article  Google Scholar 

  23. J.Raj Mohamed, L. Amalraj, J. Asian Ceram. Soc. 4, 357–366 (2016)

    Article  Google Scholar 

  24. P.S. Patil, R.K. Kawar, T. Seth, D.P. Amalnerkar, P.S. Chigare, Ceram. Int. 29, 725–734 (2003)

    Article  Google Scholar 

  25. S. Allag Abdelkrim, O. Rahmane, N. Abdelouahab, N. Abdelmalek, G. Brahim, Optik 127, 2653–2658 (2016)

    Article  ADS  Google Scholar 

  26. V.M. Nikale, N.S. Gaikwad, K.Y. Rajpure, C.H. Bhosale, J. Mater. Chem. Phys. 78, 363–366 (2003)

    Article  Google Scholar 

  27. A. Achour Rahal, M. Benhaoua, B. Jlassi, Benhaoua, Superlattices Microstruct. 86, 403–411 (2015)

    Article  ADS  Google Scholar 

  28. A. Khorsand Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  ADS  Google Scholar 

  29. M. Thirumoorthi, J. Thomas Joseph Prakash, J. Asian Ceram. Soc. 4, 124–132 (2016)

    Article  Google Scholar 

  30. A. Abhijit, S.C. Yadav, D.H. Pawar, M.D. Patil, Ghogare, J. Alloys Compd. 652, 145–152 (2015)

    Article  Google Scholar 

  31. R. Suresh, V. Ponnuswamy, R. Mariappan, N. Senthilkumar, Ceram. Int. 40, 437–445 (2014)

    Article  Google Scholar 

  32. S.P. Choudhury, S.D. Gunjal, N. Kumar, K.D. Diwate, K.C. Mohite, A. Bhattacharjee, Mater. Today Proc. 3, 1609–1619 (2016)

    Article  Google Scholar 

  33. R. Mariappan, V. Ponnuswamy, P. Suresh, N. Ashok, P. Jayamurugan, A. Chandra Bose, Superlattices Microstruct. 71, 238–249 (2014)

    Article  ADS  Google Scholar 

  34. R. Singh, M. Kumar, S. Shankar, R. Singh, K. Anup, O.P. Ghosh, B. Thakur, Das, Mater. Sci. Semicond. Process. 31, 310–314 (2015)

    Article  Google Scholar 

  35. B. Ergin, E. Ketenci, F. Atay, Int. J. Hydrogen Energy 34, 5249–5254 (2009)

    Article  Google Scholar 

  36. C.D. Lokhande, A.U. Ubale, P.S. Patil, Thin Solid Films 302, 1–4 (1997)

    Article  ADS  Google Scholar 

  37. R.S. Mane, C.D. Lokhande, Mater. Chem. Phys. 82, 347–354 (2003)

    Article  Google Scholar 

  38. J.D. Dow, D. Redfield, Phys. Rev. B 5, 594–610 (1972)

    Article  ADS  Google Scholar 

  39. C. Mrabet, A. Boukhachem, M. Amlouk, T. Manoubi, J. Alloys. Compd. 666, 392–405 (2016)

    Article  Google Scholar 

  40. J. Raj Mohamed, C. Sanjeeviraja, L. Amalraj, J. Asian Ceram. Soc. 4, 191–200 (2016)

    Article  Google Scholar 

  41. L. Hannachi, N. Bouarissa, Physics B 404, 3650–3654 (2009)

    Article  ADS  Google Scholar 

  42. F. Mezrag, W.K. Mohamed, N. Bouarissa, Physics B 405, 2272–2276 (2010)

    Article  ADS  Google Scholar 

  43. M. Ali Yildirim, S.T. Yildirim, E.F. Sakar, A. Ates, Spectrochim. Acta A Mol. Biomol. Spectrosc. 133, 60–65 (2014)

    Article  ADS  Google Scholar 

  44. M. Ali Yildirim, Aytunc, Ates, Opt. Commun. 283, 1370–1377 (2010)

    Article  ADS  Google Scholar 

  45. G. Turgut, E.F. Keskenler, S. Aydın, E. Sonmez, S. Doğan, B. Duzgun, M. Ertuğrul, Superlattices Microstruct. 56, 107–116 (2010)

    Article  ADS  Google Scholar 

  46. A.R. Babar, S.S. Shinde, A.V. Moholkar, C.H. Bhosale, J.H. Kim, K.Y. Rajpure, J. Alloy Compd. 509, 3108–3115 (2011)

    Article  Google Scholar 

  47. M. Anitha, L. Amalraj, N. Anitha, Appl. Phys. A 123, 764 (2017)

    Article  ADS  Google Scholar 

  48. Q.-P. Tran, J.-S. Fang, T.-S. Chin, Mater. Sci. Semicond. Process. 40, 664–669 (2015)

    Article  Google Scholar 

  49. C. Sankar, V. Ponnuswamy, M. Manickam, R. Suresh, R. Mariappan, P.S. Vinod, J. Mater. Sci. Mater. Electron. 28, 4577–4585 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. R. Ramesh Babu, Assistant Professor, Department of Physics, Bharathidasan University, Tiruchirappalli, India for analyzing the electrical characterization using Hall measurement instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Amalraj.

Ethics declarations

Conflict of interest

Authors declare that there is no conflict of interest in the current article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palanichamy, S., Mohamed, J.R., Kumar, P.S.S. et al. Physical properties of nebulized spray pyrolysised SnO2 thin films at different substrate temperature. Appl. Phys. A 124, 643 (2018). https://doi.org/10.1007/s00339-018-2065-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2065-8

Navigation