Skip to main content
Log in

Optoelectronic performance enhancement in pulsed laser deposited gallium-doped zinc oxide (GZO) films after UV laser crystallization

  • Rapid communication
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This study investigates the process–microstructure–property relationship during a UV laser crystallization of a transparent conductive layer—gallium doped zinc oxide (GZO) films after pulsed laser deposition (PLD). UV laser induced crystallization technique is able to apply ultra-fast post-treatment to modify GZO films with better structural and optoelectronics properties, suggesting a potential for large-scale manufacturing. A physical simulation model coupled laser–matter interaction and heat-transfer was utilized to study pulse laser heating and heat dissipation process. The laser crystallized GZO film exhibits low resistivity of ~ 3.2 × 10−4 Ω cm, high-Hall mobility of 22 cm2/V s, and low sheet resistance of 22 Ω/sq. High-transmittance (T) over 90% at 550 nm is obtained (with glass substrate). The optoelectronic performance improved mainly attributes to grain boundary modification in the polycrystalline film, e.g., decrease of grain boundary density and passivation of electron trap at grain boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. T. Minami, MRS Bull. 25(08), 38 (2000)

    Article  Google Scholar 

  2. K. Ellmer, Nat Photonics 6(12), 809 (2012)

    Article  ADS  Google Scholar 

  3. C.F. Tan, A.K.S.S. Zin, Z. Chen, C.H. Liow, H.T. Phan, H.R. Tan, Q.-H. Xu, G.W. Ho. ACS Nano 12(5), 4512 (2018)

    Article  Google Scholar 

  4. K. Xu, J. Wu, C.F. Tan, G.W. Ho, A. Wei, M. Hong, Nanoscale 9(32), 11574 (2017)

    Article  Google Scholar 

  5. I. Kapilevich, A. Skumanich, in Presented at the Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, 2009 (unpublished)

  6. B. O’Neill, Presented at the Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010 (unpublished)

  7. T.J. Coutts, T.O. Mason, D.S. Ginley, Proc. Electrochem. Soc. 99, 274 (1999)

    Google Scholar 

  8. R.G. Gordon, MRS Bull. 25(08), 52 (2000)

    Article  Google Scholar 

  9. K. Ellmer, in Transparent Conductive Zinc Oxide, vol. 104, ed. by K. Ellmer, A. Klein, B. Rech (Springer, Berlin, 2008), p. 35

    Chapter  Google Scholar 

  10. L.M. Wong, S.Y. Chiam, J.Q. Huang, S.J. Wang, W.K. Chim, J.S. Pan, Sol. Energy Mater. Sol. Cells 95(8), 2400 (2011)

    Article  Google Scholar 

  11. J.H. Hsieh, C.K. Chang, H.H. Hsieh, Y.J. Cho, J. Lin, Vacuum 118, 43 (2015)

    Article  ADS  Google Scholar 

  12. X.-L. Chen, F. Wang, X.H. Geng, Q. Huang, Y. Zhao, X.-D. Zhang, Thin Solid Films 542, 343 (2013)

    Article  ADS  Google Scholar 

  13. W.J. Maeng, J.-S. Park, J. Electroceram. 31(3), 338 (2013)

    Article  Google Scholar 

  14. K. Xu, C. Zhang, R. Zhou, R. Ji, M. Hong, Opt. Express 24(10), 10352 (2016)

    Article  ADS  Google Scholar 

  15. S. Chen, M.E.A. Warwick, R. Binions, Sol. Energy Mater. Sol. Cells 137, 202 (2015)

    Article  Google Scholar 

  16. K. Nayak Pradipta, Y. Jihoon, K. Jinwoo, C. Seungjun, J. Jaewook, L. Changhee, H. Yongtaek, J. Phys. D Appl. Phys. 42(3), 035102 (2009)

    Article  ADS  Google Scholar 

  17. H. Hagendorfer, K. Lienau, S. Nishiwaki, C.M. Fella, L. Kranz, A.R. Uhl, D. Jaeger, L. Luo, C. Gretener, S. Buecheler, Y.E. Romanyuk, A.N. Tiwari, Adv. Mater. 26(4), 632 (2014)

    Article  Google Scholar 

  18. M.Y. Zhang, Q. Nian, G.J. Cheng, Appl. Phys. Lett. 100(15), 151902 (2012)

    Article  ADS  Google Scholar 

  19. M.Y. Zhang, Q. Nian, Y. Shin, G.J. Cheng, J. Appl. Phys. 113(19), 193506 (2013)

    Article  ADS  Google Scholar 

  20. Q. Nian, M. Callahan, M. Saei, D. Look, H. Efstathiadis, J. Bailey, G.J. Cheng, Sci. Rep. 5, 15517 (2015)

    Article  ADS  Google Scholar 

  21. Q. Nian, M. Callahan, D. Look, H. Efstathiadis, J. Bailey, G.J. Cheng, APL Mater. 3(6), 062803 (2015)

    Article  ADS  Google Scholar 

  22. Q. Nian, M.Y. Zhang, Y. Wang, S.R. Das, V.S. Bhat, F. Huang, G.J. Cheng, Appl. Phys. Lett. 105(11), 111909 (2014)

    Article  ADS  Google Scholar 

  23. Z. Zhang, C. Bao, S. Ma, S. Hou, Appl. Surf. Sci. 257(17), 7893 (2011)

    Article  ADS  Google Scholar 

  24. J.-Y. Tseng, Y.-T. Chen, M.-Y. Yang, C.-Y. Wang, P.-C. Li, W.-C. Yu, Y.-F. Hsu, S.-F. Wang, Thin Solid Films 517(23), 6310 (2009)

    Article  ADS  Google Scholar 

  25. T. Yamada, H. Makino, N. Yamamoto, T. Yamamoto, J. Appl. Phys. 107(12), 123534 (2010)

    Article  ADS  Google Scholar 

  26. M.Y. Zhang, G.J. Cheng, Appl. Phys. Lett. 99(5), 051904 (2011)

    Article  ADS  Google Scholar 

  27. D.C. Look, C. Coşkun, B. Claflin, G.C. Farlow, Physica B Condens. Matter 340–342(0), 32 (2003)

    Article  ADS  Google Scholar 

  28. L. Ding, S. Nicolay, J. Steinhauser, U. Kroll, C. Ballif, Adv. Funct. Mater. 23(41), 5177 (2013)

    Article  Google Scholar 

  29. E. Alan, Delahoy, S. Guo, in Handbook of Photovoltaic Science and Engineering (Wiley, Hoboken, 2011), pp. 716

    Google Scholar 

  30. J.Y.W. Seto, J. Appl. Phys. 46(12), 5247 (1975)

    Article  ADS  Google Scholar 

  31. G. Baccarani, B. Riccò, G. Spadini, J. Appl. Phys. 49(11), 5565 (1978)

    Article  ADS  Google Scholar 

  32. R.L. Petritz, Phys. Rev. 104(6), 1508 (1956)

    Article  ADS  Google Scholar 

  33. J.G. Lu, Z.Z. Ye, Y.J. Zeng, L.P. Zhu, L. Wang, J. Yuan, B.H. Zhao, Q.L. Liang, J. Appl. Phys. 100(7), 073714 (2006)

    Article  ADS  Google Scholar 

  34. D.P. Pham, H.T. Nguyen, B.T. Phan, V.D. Hoang, S. Maenosono, C.V. Tran, Thin Solid Films 583, 201 (2015)

    Article  ADS  Google Scholar 

  35. T. Ogino, J.R. Williams, K. Watanabe, I. Sakaguchi, S. Hishita, H. Haneda, Y. Adachi, T. Ohgaki, N. Ohashi, Thin Solid Films 552, 56 (2014)

    Article  ADS  Google Scholar 

  36. F. Mitsugi, N. Umeda, N. Sakai, T. Ikegami, Thin Solid Films 518(22), 6334 (2010)

    Article  ADS  Google Scholar 

  37. S.E. Park, J.C. Lee, P.K. Song, J.-H. Lee, J. Korean Phys. Soc. 54(3), 1283 (2009)

    Article  ADS  Google Scholar 

  38. C. Jang, Z. Ye, Q. Jiang, Mater. Sci. Semicond. Process. 30, 152 (2015)

    Article  Google Scholar 

  39. A.N. Zakharov, K.V. Oskomov, S.V. Rabotkin, A.A. Solov’ev, N.S. Sochugov, Tech. Phys. 55(5), 719 (2010)

    Article  Google Scholar 

  40. C.W. Gorrie, A.K. Sigdel, J.J. Berry, B.J. Reese, M.F.A.M. van Hest, P.H. van Hest, P.H. Holloway, D.S. Ginley, J.D. Perkins, Thin Solid Films 519(1), 190 (2010)

    Article  ADS  Google Scholar 

  41. E. Fortunato, L. Raniero, L. Silva, A. Gonçalves, A. Pimentel, P. Barquinha, H. Águas, L. Pereira, G. Gonçalves, I. Ferreira, E. Elangovan, R. Martins, Sol. Energy Mater. Sol. Cells 92(12), 1605 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support from US National Research Council, and Air Force Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary J. Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nian, Q., Look, D., Leedy, K. et al. Optoelectronic performance enhancement in pulsed laser deposited gallium-doped zinc oxide (GZO) films after UV laser crystallization. Appl. Phys. A 124, 633 (2018). https://doi.org/10.1007/s00339-018-2032-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2032-4

Navigation