Skip to main content
Log in

Remarkably enhanced photoinduced charge separation rate of Bi2WO6 by Cu2+ doping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, Cu2+ was successfully doped into Bi2WO6 to further promote the photocatalytic performance of Bi2WO6. The presence of Cu2+ in the lattice of Bi2WO6 can be confirmed by the results of X-ray diffraction (XRD), energy dispersive spectrometer (EDS), high-resolution transmission electron microscopy (HRTEM) and element mapping images. The results of surface photovoltage spectroscopy (SPS) show that doping Cu2+ into the lattice of Bi2WO6 can greatly boost the separation rate of photoinduced electron–hole pairs. The electron spin-resonance (ESR) and trapping investigation exhibit that ·O2 is the main active free radicals. The photocatalytic performance of Cu-doped Bi2WO6 photocatalysts toward decolorization of rhodamine B (RhB) was evaluated under simulated sunlight irradiation using a 500 W Xe lamp as light source. Cu-doped Bi2WO6 photocatalysts display remarkably enhanced photocatalytic performance than the bare Bi2WO6, and when the molar ratio of Cu/Bi is 0.6%, the photocatalyst prepared displays the best photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.B. Wang, Appl. Catal. B Environ 221, 215–222 (2018)

    Article  Google Scholar 

  2. H. Liu, Adv. Mater. 25, 5075–5080 (2013)

    Article  Google Scholar 

  3. X.P. Dong, ACS Appl. Mater. Interfaces 5, 7079–7085 (2013)

    Article  Google Scholar 

  4. J. Liu, Appl. Catal. B Environ 106, 1–13 (2011)

    Article  Google Scholar 

  5. C. Lv, Appl. Catal. B Environ. 160, 383–389 (2014)

    Google Scholar 

  6. D. Zhang, Nanoscale 6, 2186–2193 (2014)

    Article  ADS  Google Scholar 

  7. J. Low, J. Yu, Q. Li, B. Cheng, Phys. Chem. Chem. Phys. 16, 1111–1120 (2014)

    Article  Google Scholar 

  8. J.H. Xu, W.Z. Wang, S.M. Sun, L. Wang, Appl. Catal. B Environ. 111, 126–132 (2012)

    Article  Google Scholar 

  9. X.C. Meng, Z.Z. Li, H.M. Zeng, J. Chen, Z.S. Zhang, Appl. Catal. B Environ 210, 160–172 (2017)

    Article  Google Scholar 

  10. P. Ju, P. Wang, B. Li, H. Fan, S. Ai, D. Zhang, Y. Wang, Chem. Eng. J. 236, 430–437 (2014)

    Article  Google Scholar 

  11. K. Okada, Colloid Surf. A 529, 600–612 (2017)

    Article  Google Scholar 

  12. S. Li, S. Hu, W. Jiang, Y. Liu, J. Liu, Z. Wang, J. Colloid Interf. Sci. 501, 156–163 (2017)

    Article  ADS  Google Scholar 

  13. Y.F. Tu, Appl. Surf. Sci. 404, 282–290 (2017)

    Article  ADS  Google Scholar 

  14. M.L. Zhang, Catal. Commun. 40, 120–124 (2013)

    Article  ADS  Google Scholar 

  15. Q. Wang, S. Zhu, Y. Liang, Z. Cui, X. Yang, C. Liang, A. Inoue, Mater. Res. Bull. 86, 248–256 (2017)

    Article  Google Scholar 

  16. G. Zhu, J. Liang, M. Hojamberdiev, S. Aldabe Bilmes, X. Wei, P. Liu, J. Zhou, Mater. Lett. 122, 216–219 (2014)

    Article  Google Scholar 

  17. F. Wang, W. Li, S. Gu, H. Li, X. Wu, X. Liu, Chem. Eur. J. 22, 12859–12867 (2016)

    Article  Google Scholar 

  18. H. Huang, K. Liu, K. Chen, Y. Zhang, Y. Zhang, S. Wang, J. Phys. Chem. C 118, 14379–14387 (2014)

    Article  Google Scholar 

  19. J. Liu, Y. Bai, P. Wang, Micro Nano Lett. 8, 90–93 (2013)

    Article  Google Scholar 

  20. J. Lin, Z. Guo, Z. Zhu, Ceram. Int. 40, 6495–6501 (2014)

    Article  Google Scholar 

  21. Z. Zhang, W. Wang, E. Gao, S. Sun, L. Zhang, J. Phys. Chem. C 116, 25898–25903 (2012)

    Article  Google Scholar 

  22. R.M. Mohameda, E.S. Aazam, Mater. Res. Bull. 48, 3572–3578 (2013)

    Article  Google Scholar 

  23. Y. Tian, L. Zhang, J. Zhang, J. Alloy. Compd. 537, 24–28 (2012)

    Article  Google Scholar 

  24. J.E. Yourey, J.B. Kurtz, B.M. Barlett, J. Phys. Chem. C 116, 3200–3205 (2012)

    Article  Google Scholar 

  25. S.T. Huang, J.F. Chen, J.B. Zhong, J.Z. Li, W. Hu, M.J. Li, K. Huang, R. Duan, Mater. Chem. Phys. 201, 35–41 (2017)

    Article  Google Scholar 

  26. L.Q. Ye, J.Y. Liu, Z. Jiang, T.Y. Peng, L. Zan, Appl. Catal. B. 142–143 (2013) 1–7

  27. E. Wang, W. Yang, Y. Cao, J. Phys. Chem. C 113, 20912–20917 (2009)

    Article  Google Scholar 

  28. L. Kronik, Y. Shapira, Surf. Sci. Rep. 254, 1–205 (1999)

    Article  ADS  Google Scholar 

  29. Y. Cong, B. Tian, J. Zhang, Appl. Catal. B 101, 376–381 (2011)

    Article  Google Scholar 

  30. Y.C. Shen, Appl. Surf. Sci. 258, 4929–4933 (2012)

    Article  ADS  Google Scholar 

  31. Y.C. Shen, Mater. Res. Bull. 47, 3893–3896 (2012)

    Article  Google Scholar 

  32. P.D. Yang, Nature 425, 243–244 (2003)

    Article  ADS  Google Scholar 

  33. Y.N. Xia, Science 298, 2176–2179 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported financially by the program of Science and Technology Department of Sichuan province (No. 2017096), Students Innovation Project of Sichuan Province (No. 201710622065) and the Project of Zigong city (No. 2016HG06).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junbo Zhong or Jiufu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Chen, J., Yang, Q. et al. Remarkably enhanced photoinduced charge separation rate of Bi2WO6 by Cu2+ doping. Appl. Phys. A 124, 583 (2018). https://doi.org/10.1007/s00339-018-2008-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2008-4

Navigation