Skip to main content
Log in

Impact of ablation time on Cu oxide nanoparticle green synthesis via pulsed laser ablation in liquid media

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Large-scale commercial production of nanoparticles via efficient, economical, and environmentally friendly methods is a challenging endeavour. The laser ablation method being a green and potential route of nanoparticles synthesis can be exploited to achieve this end. In this work, we report the ablation of a copper target submerged in distilled water by pulsed Nd:YAG laser. The influence of ablation time on the structure and optical properties of grown copper oxide nanoparticles are studied. Such nanoparticle composition and structure is determined by X-ray diffraction (XRD), Fourier transform infrared, and Raman analyses. Results from transmission electron microscopy images established that synthesised nanoparticles are a spherical shape with average sizes of 24–37 nm. Fluorescence spectra revealed the enhancement of nanoparticle concentration and reduction in the sizes with increasing ablation time, where the optimum ablation time is demonstrated to be 60 min. Photoluminescence spectra exhibited a prominent visible peak (green), which blueshifted from 542 to 537 nm, confirming the shrinkage of copper oxide particle size at higher ablation time. The XRD pattern showed that the prepared nanoparticles possess a single phase of monocline cupric oxide nanostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.B. Gawande, A. Goswami, F.X. Felpin, T. Asefa, X. Huang, R. Silva, X. Zou, R. Zboril, R.S. Varma, Chem. Rev. 116, 3722 (2016)

    Article  Google Scholar 

  2. N.R. Dhineshbabu, V. Rajendran, N. Nithyavathy, R. Vetumperumal, Appl. Nanosci. 6, 933 (2016)

    Article  ADS  Google Scholar 

  3. D.S. Murali, S. Kumar, R.J. Choudhary, A.D. Wadikar, M.K. Jain, A. Subrahmanyam, AIP Adv. 5, 1 (2015)

    Article  Google Scholar 

  4. M.A. Gondal, T.F. Qahtan, M.A. Dastageer, T.A. Saleh, Y.W. Maganda (ed.), High-Capacity Opt. Networks Enabling Technol. (HONET-CNS) (IEEE, Piscataway, 2013), pp. 146–150

  5. A.N. Abd, R.a. Ismail, N.F. Habubi, J. Mater. Sci. Mater. Electron. 26, 10 (2015)

    Article  Google Scholar 

  6. V. Amendola, M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009)

    Article  Google Scholar 

  7. A. Baladi, R.S. Mamoory, N. Group, Int. J. Mod. Phys. Conf. Ser. 5, 58 (2012)

    Article  Google Scholar 

  8. A.R. Sadrolhosseini, S. Abdul Rashid, A. Zakaria, K. Shameli, J. Nanomater. 2016, 1 (2016)

    Google Scholar 

  9. R. Mahfouz, F.J. Cadete Santos Aires, A. Brenier, B. Jacquier, J.C. Bertolini, Appl. Surf. Sci. 254, 5181 (2008)

    Article  ADS  Google Scholar 

  10. K.S. Khashan, G.M. Sulaiman, F.A. Abdulameer, Arab. J. Sci. Eng. 41, (2016)

  11. M. Muniz-Miranda, C. Gellini, A. Simonelli, M. Tiberi, F. Giammanco, E. Giorgetti, Appl. Phys. A Mater. Sci. Process. 110, 829 (2013)

    Article  ADS  Google Scholar 

  12. M. Gondal, T.F. Qahtan, M. Dastageer, Y.W. Maganda, D.H. Anjum, J. Nanosci. Nanotechnol. 13, 5759 (2013)

    Article  Google Scholar 

  13. M.A. Gondal, T.F. Qahtan, M.A. Dastageer, T.A. Saleh, Y.W. Maganda, D.H. Anjum, Appl. Surf. Sci. 286, 149 (2013)

    Article  ADS  Google Scholar 

  14. K. Amikura, T. Kimura, M. Hamada, N. Yokoyama, J. Miyazaki, Y. Yamada, Appl. Surf. Sci. 254, 6976 (2008)

    Article  ADS  Google Scholar 

  15. P.V. Kazakevich, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Surf. Sci. 252, 4373 (2006)

    Article  ADS  Google Scholar 

  16. R.K. Swarnkar, S.C. Singh, R. Gopal, Bull. Mater. Sci. 34, 1363 (2011)

    Article  Google Scholar 

  17. S.A. Abdulateef, M.Z. MatJafri, A.F. Omar, N.M. Ahmed, S.A. Azzez, I.M. Ibrahim, B.E.B. Al-Jumaili, AIP Conf. Proc. 1733, 20035 (2016)

    Article  Google Scholar 

  18. T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki, M. Tsuji, Appl. Surf. Sci. 243, 214 (2005)

    Article  ADS  Google Scholar 

  19. S. Hamad, G.K. Podagatlapalli, S.P. Tewari, S.V. Rao, Pramana 82, 331 (2014)

    Article  ADS  Google Scholar 

  20. D.C. Onwudiwe, T.P.J. Krüger, A. Jordaan, C.A. Strydom, Appl. Surf. Sci. 321, 197 (2014)

    Article  ADS  Google Scholar 

  21. J. Xiao, P. Liu, C.X. Wang, G.W. Yang, Prog. Mater Sci. 87, 140 (2017)

    Article  Google Scholar 

  22. A. Nath, A. Khare, J. Appl. Phys. 110, 043111 (2011)

    Article  ADS  Google Scholar 

  23. S. Chandra, A. Kumar, P.K. Tomar, J. Saudi Chem. Soc. 18, 149 (2014)

    Article  Google Scholar 

  24. S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. (Amst). 34, 1946 (2012)

    Article  ADS  Google Scholar 

  25. E. Kayahan, N. Ceylan, K. Esmer, Appl. Surf. Sci. 255, 2808 (2008)

    Article  ADS  Google Scholar 

  26. B.E.B. Al-Jumaili, Z.A. Talib, A. Ramizy, N.M. Ahmed, L.Y. Josephine, S.B. Paiman, I.B. Muhd, S.A. Abdulateef, J. Nanomater. 2016, 1–8 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Higher Education Malaysia under Research University Grant Scheme Grant No. GP-IPB/2014/9449900 and the MHESR of Iraq for financial.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zainal Abidin Talib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Jumaili, B.E.B., Talib, Z.A., Zakaria, A. et al. Impact of ablation time on Cu oxide nanoparticle green synthesis via pulsed laser ablation in liquid media. Appl. Phys. A 124, 577 (2018). https://doi.org/10.1007/s00339-018-1995-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1995-5

Navigation