Skip to main content
Log in

Organic humidity sensing film optimization by embedding inorganic nano-anatase TiO2 powder

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, surface-type humidity sensors with P3HT (organic) and P3HT–TiO2 (organic–inorganic hybrid) active layers have been fabricated. The surface morphology of the humidity active films has been studied by atomic force microscopy, whereas their crystalline structure has been studied by X-ray diffraction. We have aimed at improving the sensing parameters of P3HT-based humidity sensor, by embedding nano-anatase TiO2 powder in pristine organic P3HT moiety. The capacitance versus relative humidity (%RH) response curves of the organic and hybrid humidity sensors have been examined in 30–98%RH range (dark ambient condition, room temperature). In general, an increase in capacitance has been observed in both sensors with the increment in RH level. The observed response of both humidity sensors is believed to be associated with polarization change due to the adsorption of water molecules and transfer of charge carriers due to the formation of charge transfer complexes. The hybrid-based humidity sensor has shown significantly improved humidity-sensing parameters, i.e., fivefold higher sensitivity, with hysteresis reduced to one-third as compared to that of pristine organic humidity sensor. A relatively faster response and recovery time has also been obtained by the hybrid sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. E. Şentürk et al., Humidity sensing properties of steatite ceramic containing B 2 O 3. Sens. Actuators A Phys. 240, 80–84 (2016)

    Article  Google Scholar 

  2. Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)

    Article  ADS  Google Scholar 

  3. Q. Zafar, K. Sulaiman, Utility of PCDTBT polymer for the superior sensing parameters of electrical response based relative humidity sensor. Reactive Funct. Polym. 105, 45–51 (2016)

    Article  Google Scholar 

  4. Z. Ahmad et al., Humidity-dependent characteristics of methyl-red thin film-based Ag/methyl-red/Ag surface-type cell. Phys. E 41(1), 18–22 (2008)

    Article  Google Scholar 

  5. K.S. Karimov et al., Humidity sensing properties of Cu2O-PEPC nanocomposite films. J. Semiconduct. 33(7), 073001 (2012)

    Article  ADS  Google Scholar 

  6. E. Raza et al., Influence of thermal annealing on a capacitive humidity sensor based on newly synthesized macroporous PBObzT 2. Sens. Actuators B Chem. 235, 146–153 (2016)

    Article  Google Scholar 

  7. A.G. Al-Sehemi et al., Sensing performance optimization by tuning surface morphology of organic (D-π-A) dye based humidity sensor. Sens. Actuators B Chem. 231, 30–37 (2016)

    Article  Google Scholar 

  8. M. Tahir et al., Humidity, light and temperature dependent characteristics of Au/N-BuHHPDI/Au surface type multifunctional sensor. Sens. Actuators B Chem. 192, 565–571 (2014)

    Article  Google Scholar 

  9. S. Han et al., Poly (3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor. Sens. Actuators B Chem. 225, 10–15 (2016)

    Article  Google Scholar 

  10. T. Zhai et al., A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9(8), 6504–6529 (2009)

    Article  Google Scholar 

  11. I.B. Olenych et al., Sensory properties of hybrid composites based on poly (3, 4-ethylenedioxythiophene)-porous silicon-carbon nanotubes. Nanoscale Res. Lett. 10(1), 1–6 (2015)

    Article  Google Scholar 

  12. Q. Zafar et al., Evaluation of humidity sensing properties of TMBHPET thin film embedded with spinel cobalt ferrite nanoparticles. J. Nanopart. Res. 18(7), 1–12 (2016)

    Article  Google Scholar 

  13. D.C. Schnitzler, A.J. Zarbin, Organic/inorganic hybrid materials formed from TiO2 nanoparticles and polyaniline. J. Braz. Chem. Soc. 15(3), 378–384 (2004)

    Article  Google Scholar 

  14. S.D. Mo, W.Y. Ching, Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase, and brookite. Phys. Rev. B. 51(19), 13023 (1995)

    Article  ADS  Google Scholar 

  15. L. Chow et al., Reactive sputtered TiO 2 thin film humidity sensor with negative substrate bias. Sens. Actuators B Chem. 76(1), 310–315 (2001)

    Article  Google Scholar 

  16. F. Aziz et al., Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23, 014001 (2012)

    Article  ADS  Google Scholar 

  17. M. Shahzamani, R. Bagheri, M. Masoomi, Synthesis of silica-polybutadiene hybrid aerogels: the effects of reaction conditions on physical and mechanical properties. J. Non-Cryst. Solids. 452, 325–335 (2016)

    Article  ADS  Google Scholar 

  18. T. Maddanimath et al., Humidity sensing properties of surface functionalised polyethylene and polypropylene films. Sens. Actuators B Chem. 81(2–3), 141–151 (2002)

    Article  Google Scholar 

  19. M. Wright, A. Uddin, Organic—inorganic hybrid solar cells: a comparative review. Solar Energy Mater. Solar Cells 107, 87–111 (2012)

    Article  Google Scholar 

  20. H. Bässler, A. Köhler, Charge Transport in Organic Semiconductors, in Unimolecular and supramolecular electronics I, ed by R. M. Metzger (Springer, Berlin, Heidelberg, 2011)

    Google Scholar 

  21. M.A. Omar, Elementary Solid State Physics: Principles and Applications (Addison-Wesley, Reading, 1993)

    Google Scholar 

  22. F. Gutman, L. Lyons, Organic Semiconductors—Part A (Robert E. Publishing company, Malabar, FL, USA, 1981)

    Google Scholar 

  23. M. Saleem et al., Cu (II) 5, 10, 15, 20-tetrakis (4′-isopropylphenyl) porphyrin based surface-type resistive–capacitive multifunctional sensor. Sens. Actuators B Chem. 137(2), 442–446 (2009)

    Article  Google Scholar 

  24. R. Akram et al., Organic–Inorganic Composite Poly-N-Epoxypropylcarbazole-Nickel Phthalocynine-Cu2O Based Humidity Sensor. Sens. Lett. 11(3), 494–499 (2013)

    Article  Google Scholar 

  25. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: A comprehensive review. Sensors 14(5), 7881–7939 (2014)

    Article  Google Scholar 

  26. F. Aziz et al., Influence of humidity conditions on the capacitive and resistive response of an Al/VOPc/Pt co-planar humidity sensor. Meas. Sci. Technol. 23(1), 014001 (2011)

    Article  ADS  Google Scholar 

  27. M. Björkqvist et al., Characterization of thermally carbonized porous silicon humidity sensor. Sens. Actuators A Phys.ical 112(2), 244–247 (2004)

    Article  Google Scholar 

  28. C.-W. Lee, H.-W. Rhee, M.-S. Gong, Humidity sensor using epoxy resin containing quaternary ammonium salts. Sens. Actuators B Chem. 73(2), 124–129 (2001)

    Article  Google Scholar 

  29. M.T.S. Chani et al., Polyaniline based impedance humidity sensors. Solid State Sci. 18, 78–82 (2013)

    Article  ADS  Google Scholar 

  30. M.I. Azmer et al., Compositional engineering of VOPcPhO-TiO2 nano-composite to reduce the absolute threshold value of humidity sensors. Talanta 174, 279–284 (2017)

    Article  Google Scholar 

  31. A. Sun, L. Huang, Y. Li, Study on humidity sensing property based on TiO2 porous film and polystyrene sulfonic sodium. Sens. Actuators B 139(2), 543–547 (2009)

    Article  Google Scholar 

  32. M. Björkqvist et al., Studies on hysteresis reduction in thermally carbonized porous silicon humidity sensor. IEEE Sens. J. 6(3), 542–547 (2006)

    Article  ADS  Google Scholar 

  33. Z. Ahmad et al., A humidity sensing organic-inorganic composite for environmental monitoring. Sensors 13(3), 3615–3624 (2013)

    Article  Google Scholar 

  34. A. Tetelin, C. Pellet, Modeling and optimization of a fast response capacitive humidity sensor. IEEE Sens. J. 6(3), 714–720 (2006)

    Article  ADS  Google Scholar 

  35. Z. Rittersma, Recent achievements in miniaturised humidity sensors—a review of transduction techniques. Sens. Actuators A Phys. 96(2), 196–210 (2002)

    Article  Google Scholar 

  36. M.I. Azmer et al., Humidity dependent electrical properties of an organic material DMBHPET. Measurement 61(0), 180–184 (2015)

    Article  Google Scholar 

  37. M. Izzat Azmer et al., Morphological and structural properties of VoPcPhO:P3HT composite thin films. Mater. Lett. 164, 605–608 (2016)

    Article  Google Scholar 

  38. D. Hernández-Rivera et al., A capacitive humidity sensor based on an electrospun PVDF/graphene membrane. Sensors 17(5), 1009 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Qayyum Zafar is thankful to Higher Education Commission, Pakistan for his placement as Assistant Professor and funding at Government College University, Lahore under IPFP program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qayyum Zafar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azmer, M.I., Zafar, Q., Qadir, K.W. et al. Organic humidity sensing film optimization by embedding inorganic nano-anatase TiO2 powder. Appl. Phys. A 124, 508 (2018). https://doi.org/10.1007/s00339-018-1924-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1924-7

Navigation