Skip to main content
Log in

A physical–statistical model for the growth process of carbon nanotubes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the growth process of carbon nanotube (CNT) arrays, the height and flatness of the array must be controlled. In general, a profile control algorithm can be used to characterize the morphology of the CNT array through considering the parameters of the profile function as control objective. This paper examines the performance of the present model using real data and finds the defect of losing correlation information in the data. To solve this limitation, the semivariogram borrowed from geostatistics is introduced to add a spatial correlation. Furthermore, we drive the growth height formula based on a physical mechanism and then propose a physical–statistical model that contains a spatial correlation. Simulation and validation are provided to verify the performance of the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.L. Jiang, Q.Q. Li, S.S. Fan, Nanotechnology: Spinning continuous carbon nanotube yarns: Carbon nanotubes weave their way into a range of imaginative macroscopic applications. Nature 419(6909), 801–801 (2002)

    Article  ADS  Google Scholar 

  2. E.T. Thostenson, Z. Ren, T.-W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899–1912 (2001)

    Article  Google Scholar 

  3. M. Kumar, Y. Ando, Chemical vapor deposition of carbon nanotubes: A review on growth mechanism and mass production. J. Nanosci. Nanotechnol. 10(6), 3739–3758 (2010)

    Article  Google Scholar 

  4. X. Wang, S. Wu, K.B. Wang, A spatial calibration model for Nanotube film quality prediction. IEEE Trans. Autom. Sci. Eng. 13(2), 903–917 (2016)

    Article  Google Scholar 

  5. C. Feng, K. Liu, J.-S. Wu, L. Liu, J.-S. Cheng, Y. Zhang, Y. Sun, Q. Li, S. Fan, K. Jiang, Flexible, stretchable, transparent conducting films made from superaligned carbon nanotubes. Adv. Funct. Mater. 20(6), 885–891 (2010)

    Article  Google Scholar 

  6. R.S. Wagner, W.C. Ellis, Vapor-liquid mechanism of single crystal growth. Appl. Phys. Lett. 4(5), 89–90 (1964)

    Article  ADS  Google Scholar 

  7. E.I. Givargizov, Fundamental aspects of VLS growth. J. Cryst. Growth 31, 20–30 (1975)

    Article  ADS  Google Scholar 

  8. J. Rostrup-Nielsen, D.L. Trimm, Mechanisms of carbon formation on nickel-containing catalysts. J. Catal. 48(1), 155–165 (1977)

    Article  Google Scholar 

  9. J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H. Dai, Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705), 878–881 (1998)

    Article  ADS  Google Scholar 

  10. M. Su, B. Zheng, J. Liu, A scalable CVD method for the synthesis of single-walled carbon nanotubes with high catalyst productivity. Chem. Phys. Lett. 322(5), 321–326 (2000)

    Article  ADS  Google Scholar 

  11. J. Kong, A.M. Cassell, H. Dai, Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett. 292(4–6), 567–574 (1998)

    Article  ADS  Google Scholar 

  12. K. Jiang, C. Feng, K. Liu, S. Fan, A vapor–liquid–solid model for chemical vapor deposition growth of carbon nanotubes. J. Nanosci. Nanotechnol. 7(4), 1494–1504 (2007)

    Article  Google Scholar 

  13. W. Mai, X. Deng, The applications of statistical quantification techniques in nanomechanics and nanoelectronics. Nanotechnology 21(40), 405704 (2010)

    Article  ADS  Google Scholar 

  14. T. Dasgupta, B. Weintraub, V.R. Joseph, A physical statistical model for density control of nanowires. IIE Trans. 43(4), 233–241 (2011)

    Article  Google Scholar 

  15. L. Wang, Q. Huang, Cross-domain model building and validation (CDMV): A new modeling strategy to reinforce understanding of nanomanufacturing processes. IEEE Trans. Autom. Sci. Eng. 10(3), 571–578 (2013)

    Article  Google Scholar 

  16. X. Wang, B. Li, K. Wang, S. Wu, An engineering-statistical model for synthesis process of nanomaterials, in 2011 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE) (2011), pp. 72–76

  17. Q. Huang, Physics-driven Bayesian hierarchical modeling of the nanowire growth process at each scale. IIE Trans. 43(1), 1–11 (2010)

    Article  Google Scholar 

  18. L. Xu, Q. Huang, Modeling the interactions among neighboring nanostructures for local feature characterization and defect detection. IEEE Trans. Autom. Sci. Eng. 9(4), 745–754 (2012)

    Article  Google Scholar 

  19. T. Dasgupta, C. Ma, V.R. Joseph, Z.L. Wang, C.F.J. Wu, Statistical modeling and analysis for robust synthesis of nanostructures. J. Am. Stat. Assoc. 103(482), 594–603 (2008)

    Article  MathSciNet  Google Scholar 

  20. X. Wang, S. Wu, K. Wang, A run-to-run profile control algorithm for improving the flatness of nano-scale products. IEEE Trans. Autom. Sci. Eng. 12(1), 192–203 (2015)

    Article  Google Scholar 

  21. J. Durbin, G.S. Watson, Testing for serial correlation in least squares regression: I. Biometrika 37(3/4), 409–428 (1950)

    Article  MathSciNet  Google Scholar 

  22. O. Schabenberger, C.A. Gotway, Statistical Methods for Spatial Data Analysis (CRC Press, London, 2004)

    MATH  Google Scholar 

  23. D.M. Hawkins, N. Cressie, Robust kriginga proposal. J. Int. Assoc. Math. Geol. 16(1), 3–18 (1984)

    Article  Google Scholar 

  24. A.G. Journel, C.J. Huijbregts, Mining Geostatistics (Academic Press, New York, 1978)

    Google Scholar 

  25. N. Cressie, D.M. Hawkins, Robust estimation of the variogram: I. J. Int. Assoc. Math. Geol. 12(2), 115–125 (1980)

    Article  MathSciNet  Google Scholar 

  26. O. Danielsson, A. Henry, E. Janzen, Growth rate predictions of chemical vapor deposited silicon carbide epitaxial layers. J. Cryst. Growth 243(1), 170–184 (2002)

    Article  ADS  Google Scholar 

  27. N. Cressie, Statistics for Spatical Data (Wiley, New York, 1993)

    Google Scholar 

  28. D. Ginsbourger, D. Dupuy, A. Badea, L. Carraro, O. Roustant, A note on the choice and the estimation of kriging models for the analysis of deterministic computer experiments. Appl. Stoch. Models Bus. Ind. 25(2), 115–131 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China under Grant 71072012, and the Tsinghua University Initiative Scientific Research Program. The authors would like to thank Prof. S. Fan, Dr. L. Liu, and Dr. Q. Cai from Tsinghua-Foxconn Nanotechnology Research Center for providing the raw data and expertise on CNTs array production. They also thank to the National Natural Science Foundation of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Su Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, M., Wu, S. & Xu, C. A physical–statistical model for the growth process of carbon nanotubes. Appl. Phys. A 124, 790 (2018). https://doi.org/10.1007/s00339-018-1916-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1916-7

Navigation