Skip to main content
Log in

Structural and dielectric properties of Al x Zn1−xO (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10) nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The chemical precipitation method is followed for the synthesis of Al-doped ZnO nanoparticles (NPs) with varying doping concentrations (0, 0.02, 0.04, 0.06, 0.08, and 0.10 M). A single hexagonal crystalline phase of wurtzite structure has been confirmed for all the samples by X-ray diffraction. Crystalline size and microstrain of the un-doped and doped ZnO (NPs) is determined by the Williamson–Hall (W–H) analysis. The optical properties like band gap and Urbach energy are found out by the UV–visible spectroscopy. The functional bonds are detailed by Fourier transmission infrared spectroscopy. The dielectric properties have been shown by doped sample due to hopping mechanisms as compared to the undoped. The loss factor (tanδ) follows an inverse direction as correspond to frequency due to the presence of dielectric dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Tian, S.R. Bakaul, T. Wu, Nanoscale 4, 1529–1540 (2012)

    Article  ADS  Google Scholar 

  2. M. Bibes, A. Barthelemy, IEEE Trans. on Electron. Devices 54, 1003–1023 (2007)

    Article  ADS  Google Scholar 

  3. R.K. Gupta, K. Ghosh, P.K. Kahol, Mat. Lett. 64, 2022–2024 (2010)

    Article  Google Scholar 

  4. P. Sharma, A. Gupta, F.J. Owens, A. Inoue, K.V. Rao, J. Magn. Magn. Mat. 282, 115–121 (2004)

    Article  ADS  Google Scholar 

  5. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. Von Molnar, M.L. Roukes, D.M. Treger, Science 294, 1488–1495 (2001)

    Article  ADS  Google Scholar 

  6. A.A. Bergh, P.J. Dean, Light-Emitting Diodes (Oxford, Clarendon Press, 1976), p. 598

    Google Scholar 

  7. X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Nature 409, 66 (2001)

    Article  ADS  Google Scholar 

  8. Y. Du, S. Guo, Nanoscale 8, 2532–2543 (2016)

    Article  ADS  Google Scholar 

  9. S.M. Komirenko, K.W. Kim, V.A. Kochelap, J.M. Zavada, Appl. Phys. Lett. 81, 4616–4618 (2002)

    Article  ADS  Google Scholar 

  10. K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, B.H. Hong, Nature 457, 706 (2009)

    Article  ADS  Google Scholar 

  11. F. Shangfeng, G. Weimin, L. Jian, C. Yunfa, L. Yun, Effect of Ga3+ doping on the electrical conductivity of nano-sized zinc oxide powders (2006)

  12. E. Pál, I. Dékány, Coll. Surf. A Physicochem. Eng. Asp. 318, 141–150 (2008)

    Article  Google Scholar 

  13. C.C. Wang, J.Y. Ying, Chem. Mater. 11, 3113–3120 (1999)

    Article  Google Scholar 

  14. R. Yousefi, J. Beheshtian, S.M. Seyed-Talebi, H.R. Azimi, F. Jamali-Sheini, Chem. Asian J. 13, 194–203 (2018)

    Article  Google Scholar 

  15. A. Kharatzadeh, F. Jamali-Sheini, R. Yousefi, Mater. Des. 107, 47–55 (2016)

    Article  Google Scholar 

  16. R. Sáaedi, Yousefi, J. Appl. Phys. 122, 224505 (2017)

    Article  ADS  Google Scholar 

  17. Y.C. Kong, D.P. Yu, B. Zhang, W. Fang, S.Q. Feng, Appl. Phys. Lett. 78, 407–409 (2001)

    Article  ADS  Google Scholar 

  18. X. Zhang, Y. Chen, S. Zhang, C. Qiu, Sep. Purif. Tech. 172, 236–241 (2017)

    Article  Google Scholar 

  19. J. Li, J. Xu, Q. Xu, G. Fang, J. Alloys Compd. 542, 151–156 (2012)

    Article  Google Scholar 

  20. A.K. Zak, W.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  ADS  Google Scholar 

  21. L. Xu, Y.L. Hu, C. Pelligra, C.H. Chen, L. Jin, H. Huang, S.L. Suib, Chem. Mat. 21, 2875–2885 (2009)

    Article  Google Scholar 

  22. R. Mahdavi, S.S.A. Talesh, Adv. Powder Technol. 28, 1418–1425 (2017)

    Article  Google Scholar 

  23. E. Sernelius, K.F. Berggren, Z.C. Jin, I. Hamberg, C.G. Granqvist, Phys. Rev. B 37, 10244 (1988)

    Article  ADS  Google Scholar 

  24. J.D. Wang, J.K. Liu, Q. Tong, Y. Lu, X.H. Yang, Ind. Eng. Chem. Res. 53, 2229–2237 (2014)

    Article  Google Scholar 

  25. M. Ahmad, E. Ahmed, Y. Zhang, N.R. Khalid, J. Xu, M. Ullah, Z. Hong, Curr. Appl. Phy. 13, 697–704 (2013)

    Article  ADS  Google Scholar 

  26. K. Saravana kumar, K. Ravi chandran, J. Mat. Sci. Mat. Electron. 23, 1462–1469 (2012)

    Article  Google Scholar 

  27. A.A.A. Ahmed, Z.A. Talib, M.Z. bin Hussein, A. Zakaria, J. Solid State Chem. 191, 271–278 (2012)

    Article  ADS  Google Scholar 

  28. N. Bouropoulos, G.C. Psarras, N. Moustakas, A. Chrissanthopoulos, S. Baskoutas, Phys. Status Solidi (a) 205, 2033–2037 (2008)

    Article  ADS  Google Scholar 

  29. H.W. Lee, S.P. Lau, Y.G. Wang, K.Y. Tse, H.H. Hng, B.K. Tay, J. Cryst. Growth 268, 596–601 (2004)

    Article  ADS  Google Scholar 

  30. R.B.H. Tahar, J. Eur. Ceram Soc. 25, 3301–3306 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neha Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, N., Kumar, S. & Sharma, V. Structural and dielectric properties of Al x Zn1−xO (x = 0, 0.02, 0.04, 0.06, 0.08 and 0.10) nanoparticles. Appl. Phys. A 124, 373 (2018). https://doi.org/10.1007/s00339-018-1779-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1779-y

Navigation