Skip to main content
Log in

Synthesis and characterization of ZnO nanoparticles: effect of solvent and antifungal capacity of NPs obtained in ethylene glycol

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, nanoparticles of zinc oxide (ZnO-NPs) were synthesized using acetic acid, ethanol and ethylene glycol as solvents. To determine the physicochemical and structural characteristics of the synthesized nanoparticles, IR spectroscopy, X-ray diffraction, UV–Vis spectroscopy and transmission electron microscopy were used. The characterization results indicated that the particles obtained were of nanometers size (< 100 nm) with different morphologies: needle-type when using acetic acid, nanoribbons using ethanol, and spheroidal using ethylene glycol. The results of this work show that on using solvents with a lower dielectric constant value a preferential direction of nanoparticle growth would be favored, leading to the formation of nanoribbons, in ethanol (εr = 24.3), and needles in acetic acid (εr = 6.2). The band gap of ZnO-Nps depends of synthesis solvent used: 3.37 eV for acetic acid, 3.3 eV to ethanol and 3.28 eV to ethylene glycol, indicating that the optical properties of these nanoparticles are affected by the synthesis medium. Based on the information from the characterization of the ZnO-NPs synthesized, the spheroidal nanoparticles were selected, to determine their antifungal capacity on cultures of Aspergillus niger strains. The concentrations of ZnO-NPs that showed the greatest antifungal effect were those from 9 mmol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ü. Ozgur, Y.I. Alivov, C. Liu, A. Teke, A.M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, H. Morkov, J. Appl. Phys 98, 041301 (2005)

    ADS  Google Scholar 

  2. C. Kilingshim, Phys. Status Solid B 244, 3027–3037 (2007)

    ADS  Google Scholar 

  3. C. Kilingshim, Chem. Phys. Chem. 8, 782–803 (2007)

    Google Scholar 

  4. A.B. Djurisic, Y.H. Leung, Small 2, 944–961 (2006)

    Google Scholar 

  5. Ch. Jagadish, S.J. Pearton (eds.) Zinc Oxide Bulk, Thin Films and Nanostructures: Processing, Properties and Applications (Elsevier Ltd, Amsterdam, 2006)

    Google Scholar 

  6. H. Morkoc, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology (Wiley, Weinheim, 2009)

    Google Scholar 

  7. C. Kilingshirn, B.K. Meyer, A. Waag, A. Hoffmann, J. Geurtts, Zinc Oxide: From Fundamental Properties Towards Novel Applications, Springer Series in Materials Science, vol. 120 (Springer, Berlin, 2010)

    Google Scholar 

  8. A. Janotti, C.G. Van der Walle, Rep. Prog. Phys. 72, 126501/126501–126501/12659 (2009)

    ADS  Google Scholar 

  9. C. Wöll, Prog. Surf. Sci. 82, 55–120 (2007)

    ADS  Google Scholar 

  10. P. Pichat ed., Photocatalysis and Water Purification, Materials for Sustainable Energy and Development (Wiley, Weinheim, 2013)

    Google Scholar 

  11. H. Kisch, Semiconductor Photocatalysis: Principles and Applications (Wiley, Weinheim, 2015)

    Google Scholar 

  12. O. Dulub, L.A. Boatner, U. Diebold, Surf. Sci. 519, 201–217 (2002)

    ADS  Google Scholar 

  13. E.J. Tait, B.C. Richard, B.A. Eugene, U.S. patent 3060134 (1962)

  14. P.J. Nieuwenhuizen, Appl. Catal. A 207, 55–68 (2001)

    Google Scholar 

  15. G. Auer, W.D. Griebler, B. Jahn, Industrial Inorganic Pigments, 3rd edn (Wiley, Weinheim, 2005)

    Google Scholar 

  16. G. Heiland, Z. Phys. 138, 459–464 (1954)

    ADS  Google Scholar 

  17. N.M. Beekmans, J. Chem. Soc. Faraday Trans. 74, 31–45 (1978)

    Google Scholar 

  18. P. Patnaik, Handbook of Inorganic Chemicals. (McGraw Hill, New York, 2003)

    Google Scholar 

  19. G.J. Nohynek, J. Lademann, C. Ribaud, M.S. Roberts, Crit. Rev. Toxicol 37, 251–277 (2007)

    Google Scholar 

  20. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833–2881 (2014)

    ADS  Google Scholar 

  21. J.E. Rodríguez-Páez, A.C. Caballero, M. Villegas, C. Moure, P. Durán, J.F. Fernández, J. Eur. Ceram. Soc. 21, 925–930 (2001)

    Google Scholar 

  22. M.-H. Wang, X.-Y. Ma, F. Zhou, Mater. Lett. 142, 64–66 (2015)

    Google Scholar 

  23. Y.-M. Wang, J.H. Li, R.-H. Hong, J. Cent. South Univ. 19(4), 863–868 (2012)

    Google Scholar 

  24. H. Avila, A.M. Cruz, M. Villegas, A.C. Caballero, J.E. Rodríguez-Páez, Bol. Soc. Esp. Ceram. 43(4), 740–744 (2004)

    Google Scholar 

  25. J. Guao, Ch. Peng, Ceram. Int. 41, 2180–2186 (2015)

    Google Scholar 

  26. R.M. Alwan, Q.A. Kadhim, K.M. Sahan, R.A. Ali, R.J. Mahdi, N.A. Kassim, A.N. Jassim, Nanosci. Nanotechnol. 5(1), 1–6 (2015)

    Google Scholar 

  27. K. Elen, H. Van der Rul, A. Hardy, M.K. Van Bael, J. D´Haen, R. Peeters, D. Franco, J. Mullens, Nanotechnology 20, 055608 (2009)

    ADS  Google Scholar 

  28. K. Ocakoglu, A. Mansour, S. Yildirimcan, A.A. Al-Ghamdi, F. El-Tantawy, F. Yakuphanoglu, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 148, 362–368 (2015)

    ADS  Google Scholar 

  29. K. Anand, S. Varghese, T. Kurian, Int. J. Theor. Appl. Sci. 6(1), 87–93 (2014)

    Google Scholar 

  30. H. Yu, H. Fan, X. Wang, J. Wang, P. Cheng, Optik 126, 4397–4400 (2015)

    ADS  Google Scholar 

  31. Y. Li, Ch.-Sh. Liu. Trans. Nonferrous Met. Soc. China 19, 399–403 (2009)

    Google Scholar 

  32. A. Dakhlaoui, M.L. Jendoubi, S. Smiri, A. Kanaev, N. Jouini, J. Cryst. Growth 311, 3989–3996 (2009)

    ADS  Google Scholar 

  33. J.P. Jolivet, Metal Oxide Chemistry and Synthesis (Wiley, West Sussex, 2000)

    Google Scholar 

  34. B. Tezak, Disc. Faraday Soc. 42, 175–186 (1966)

    Google Scholar 

  35. A.E. Nielsen, Croat. Chem. Acta 42, 319–332 (1970)

    Google Scholar 

  36. T. Sugimoto, Adv. Colloid Interf. Sci. 28, 65–108 (1987)

    Google Scholar 

  37. C. Sanchez, J. Livage, M. Henry, F. Babonneau, J. Non Cryst Sol 100(1–3), 65–76 (1988)

    ADS  Google Scholar 

  38. M. Nabavi, S. Doeuff, C. Sanchez, J. Livage, J. Non Cryst. Sol. 121(1–3), 31–34 (1990)

    ADS  Google Scholar 

  39. J. Livage, C. Sanchez, J Non Cryst. Sol. 145, 11–19 (1992)

    ADS  Google Scholar 

  40. J.R. Bourne, R.J. Davey, J. Cryst. Growth 34, 230–238 (1976)

    ADS  Google Scholar 

  41. J.R. Bourne, R.J. Davey, J. Cryst. Growth 36, 278–286 (1976)

    ADS  Google Scholar 

  42. J.R. Davey, J. Cryst. Growth 76, 637–644 (1986)

    ADS  Google Scholar 

  43. J.R. Bourne, R.J. Davey, J. McCulloch, J. Chem. Eng. Sci. 33(2), 199–204 (1978)

    Google Scholar 

  44. W.K. Burton, N. Cabrera, F.C. Frank, Philos. Trans. R. Soc. (Lond.) 243, 299–358 (1951)

    ADS  Google Scholar 

  45. J.R. Bourne, R.J. Davey, J. Cryst. Growth 39, 267–274 (1977)

    ADS  Google Scholar 

  46. M.K. Singh, A. Banerjee, Cryst. Growth Des. 13, 2413–2425 (2013)

    Google Scholar 

  47. G. Chen, M. Xia, W. Lei, F. Wang, J. Mol. Model. 19(12), 5397–5406 (2013)

    Google Scholar 

  48. V. Natarajan, S. Usharani, M. Arivanandhan, P. Anandan, Y. Hayakawa, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 145, 329–332 (2015)

    ADS  Google Scholar 

  49. Y.-M. Chai, X. Shang, G.Q. Han, B. Dong, W.H. Hu, Y.R. Liu, X. Li, Ch.-G. Liu, Int. J. Electrochem. Sci. 11, 3050–3055 (2016)

    Google Scholar 

  50. A. Nel, T. Xia, L. Madler, N. Li, Science 311, 622–627 (2006)

    ADS  Google Scholar 

  51. C. Buzea, I.I. Pacheco, K. Robbie, Biointerphases 2(4), MR17–MR172 (2007)

    Google Scholar 

  52. P.Ch. Ray, H. Yu, P.P. Fu, J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27(1), 1–35 (2009)

    Google Scholar 

  53. M.K. Ram, S. Andreescu, H. Ding, Nanotechnology for Environmental Decontamination (The McGraw-Hill Companies, Inc., New York, 2011)

    Google Scholar 

  54. K.J. Kim, W.S. Sung, B.K. Suh, S.K. Moon, J.S. Choi, J.G. Kim, Biometals 22(2), 235–242 (2009)

    Google Scholar 

  55. A. Lipovsky, Z. Tzitrinovich, H. Friedmann, G. Applerot, A. Gedanken, R. Lubart, J. Phys. Chem. C 113(36), 15997–16001 (2009)

    Google Scholar 

  56. H.C. Poynton, J. Lazorchak, Ch. Impellitteri, M. Smith, M. Rogers, M. Patra, K. Hammer, H. Allen, Ch. Vulpe, Environ. Sci. Technol. 45(2), 762–768 (2010)

    ADS  Google Scholar 

  57. T. Xia, M. Kovochich, M. Liong, L. Madler, B. Gilbert, H. Shi, J. Yeh, J. Zink, A. Nel, ACS Nano 2(10), 2121–2134 (2008)

    Google Scholar 

  58. A. Sapkota, A.J. Anceno, S. Baruah, O.V. Shipin, J. Dutta, Nanotechnology 22(21), 215703 (2011)

    ADS  Google Scholar 

  59. J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu, H. Kojima, J. Ferment. Bioeng. 86(5), 521–522 (1998)

    Google Scholar 

  60. D. Sharma, J. Rajput, B.S. Kaith, M. Kaur, S. Sharma, Thin Solid Films 519(3), 1224–1229 (2010)

    ADS  Google Scholar 

  61. L. He, Y. Liu, A. Mustapha, M. Lin, Microbiol Res 166(3), 207–215 (2011)

    Google Scholar 

  62. K. Kairyte, A. Kadys, Z. Luksiene, J. Photochem. Photobiol. B 128, 78–84 (2013)

    Google Scholar 

  63. E.L. Esparsa Rivera, Actividad Antimicrobial de Nanopartículas de Cobre y Óxido de Zinc contra Hongos y Bacterias Fitopatógenas, Tesis de la División de Agronomia, Departmento de Botánica, Universidad Autónoma Agraria Antonio Narro-Saltillo, México, 2015

  64. Q. Qu, L. Wang, L. Li, Y. He, M. Yang, Zh. Dinga, Corros. Sci. 98, 249–259 (2015)

    Google Scholar 

  65. A. Escobedo Morales, E. Sánchez Mora, U. Pal, Rev. Mex. Fís. S 53(5), 18–22 (2007)

    Google Scholar 

  66. C.R. Lane, B.A. Beales, K. Hughes, “Fungal Plant Pathogens: principles and protocols”, Firths edition, Principles and Protocols Series (CABI, Boston, 2012), p. 307

    Google Scholar 

  67. Z.W. Alemán, E.R. Días, I. Molina, Rev. Cubana Hig. Epidemiol. 3(43), 1–4 (2005)

    Google Scholar 

  68. R.T. Morrison, R.N. Boyd, Quimica organica (Addison Wesley Longman de México, S.A. de C.V., 1998), p. 626

    Google Scholar 

  69. F. Fiévet, R. Brayner in “Nanomaterials: A Danger or A Promise?”, in Chap. 1, ed. by R. Brayner, F. Fiévet, Th. Coradin (Springer, London, 2013), pp. 1–25

    Google Scholar 

  70. J.E. Rodríguez Páez, “Estudio de los mecanismos de formación de partículas de ZnO con diseño morfológico y dimensional obtenidas por el método de precipitación controlada”, Tesis doctoral. Universidad Autónoma de Madrid-España, 1999

  71. L. Genzel, T.P. Martin, Surf. Sci. 34, 33–49 (1973)

    ADS  Google Scholar 

  72. S. Hayashi, N. Nakamori, H. Kanamori, J. Phys. Soc. Jpn. 46(1), 176–183 (1979)

    ADS  Google Scholar 

  73. C.J. Serna, M. Ocaña, J.E. Iglesias, J. Phys. C Solid State Phys. 20, 473–484 (1987)

    ADS  Google Scholar 

  74. M. Ocaña, V. Formés, J.V. García Ramos, C.J. Serna, J. Sol. Stat. Chem 75, 364–372 (1988)

    ADS  Google Scholar 

  75. M. Andrés-Vérges, M. Martínez-Gallego, J. Mater. Sci. 27, 3756–3762 (1992)

    ADS  Google Scholar 

  76. H. Ma, N.J. Kabengi, P.M. Bertsch, J.M. Unrine, T.C. Glenn, P.L. Williams, Environ. Pollut. 159(6), 1473–1480 (2011)

    Google Scholar 

  77. L.J.W. Shimon, M. Vaida, L. Addadi, M. Lahav, L. Leiserowitz, J. Am. Chem. Soc. 112(17), 6215–6220 (1990)

    Google Scholar 

  78. M. Lahav, L. Leiserowitz, Cryst. Growth Des. 6(3), 619–624 (2006)

    Google Scholar 

  79. M. Elwenspock, P. Benneman, J.P. van Eerden, J. Cryst. Growth 83, 297–305 (1987)

    ADS  Google Scholar 

  80. P. Bennema, J. Cryst. Growth 122, 110–119 (1992)

    ADS  Google Scholar 

  81. R. Boistelle, Crystal growth from non aqueous solutions, in Interfacial Aspects of Phase Transformation, ed. by B. Mutaftschiev (Springer, The Netherlands, 1982), pp. 531–557

    Google Scholar 

  82. A.F. Wells, Philos. Mag. 37, 184–199 (1946)

    Google Scholar 

  83. A.F. Wells, Philos. Mag. 37, 217–239 (1946)

    Google Scholar 

  84. A.F. Wells, Discuss. Faraday Soc. 5, 187–201 (1949)

    Google Scholar 

  85. J.N. Israelachvili, Intermolecular and Surface Forces, Third edn. (Elsevier Inc., Amsterdam, 2011)

    Google Scholar 

  86. J.H. ter Horst, R.M. Geertman, G.M. van Rosmalen, J. Cryst. Growth 230, 277–284 (2001).

    ADS  Google Scholar 

  87. H. Füredi-Milhofer, Pure. Appl. Chem. 53, 2041–2055 (1981)

    Google Scholar 

  88. E. Matijevic, J. Colloid Interface Sci. 58(2), 374–389 (1977)

    ADS  Google Scholar 

  89. J. Livage, M. Henry, C. Sanchez, Prog. Solid St. Chem 18, 259–341 (1988)

    Google Scholar 

  90. A.F. D’adamo, R.H. Kienle, J. Am. Chem. Soc. 77, 4408 (1955)

    Google Scholar 

  91. A. Lipovsky, Y. Nitzan, A. Gudanken, R. Lubart, Nanotechnology 22(10), 105101 (2011)

    ADS  Google Scholar 

  92. V.L. Prasanna, R. Vijayaraghavan, Langmuir 31(33), 9155–9162 (2015)

    Google Scholar 

  93. B. L´Azou, F. Marano, in Nanoethics and Nanotoxicology, ed. by Ph. Houdy, M. Lahmani, F. Marano. Nanoparticle toxicity mechanisms: oxidative stress and inflammation, (Springer, Berlin, 2011), pp. 87–109

    Google Scholar 

Download references

Acknowledgements

We are grateful to the University of Cauca for making their laboratory facilities available for carrying out this work and to VRI-Unicauca for all logistical support. We are especially grateful to Colin McLachlan for suggestions relating to the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge E. Rodríguez-Páez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López, C., Rodríguez-Páez, J.E. Synthesis and characterization of ZnO nanoparticles: effect of solvent and antifungal capacity of NPs obtained in ethylene glycol. Appl. Phys. A 123, 748 (2017). https://doi.org/10.1007/s00339-017-1339-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1339-x

Navigation