Skip to main content
Log in

Impact of liquid environment on femtosecond laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The ablation rate by femtosecond laser processing of iron in different liquids is investigated for fluences up to 5 J/cm\(^2\). The resulting fluence dependency is modeled by an approach derived from the two-temperature model. In our experiments, the liquid environment strongly affects the effective penetration depth, e.g, the ablation rate in water is almost ten times higher than in toluene. This effect is discussed and introduced phenomenologically into the model. Additional reflectivity measurements and plasma imaging provide improved insight into the ablation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B.N. Chichkov, C. Momma, S. Nolte, F. Alvensleben, A. Tünnermann, Appl. Phys. A 63(2), 109 (1996). doi:10.1007/BF01567637

    Article  ADS  Google Scholar 

  2. D. Zhang, B. Gökce, S. Sommer, R. Streubel, S. Barcikowski, Appl. Surf. Sci. (2016). doi:10.1016/j.apsusc.2016.01.071

    Google Scholar 

  3. A. Kruusing, Opt. Lasers Eng. 41(2), 329 (2004). doi:10.1016/S0143-8166(02)00143-4

    Article  Google Scholar 

  4. S. Barcikowski, G. Compagnini, Phys. Chem. Chem. Phys. 15(9), 3022 (2013). doi:10.1039/c2cp90132c

    Article  Google Scholar 

  5. D. Zhang, B. Gökce, S. Barcikowski, Chem. Rev. 117(5), 3990 (2017). doi:10.1021/acs.chemrev.6b00468

    Article  Google Scholar 

  6. A. Kanitz, J.S. Hoppius, M. Del Mar Sanz, M. Maicas, A. Ostendorf, E.L. Gurevich, Chemphyschem 18(9), 1155 (2017). doi:10.1002/cphc.201601252

    Article  Google Scholar 

  7. M. Lisowski, P.A. Loukakos, U. Bovensiepen, J. Stnhler, C. Gahl, M. Wolf, Appl. Phys. A 78(2), 165 (2004). doi: 10.1007/s00339-003-2301-7

  8. B.Y. Mueller, B. Rethfeld, Phys. Rev. B 87(3) (2013). doi: 10.1103/PhysRevB.87.035139

  9. D.S. Ivanov, V.P. Lipp, V.P. Veiko, E. Yakovlev, B. Rethfeld, M.E. Garcia, Appl. Phys. A 117(4), 2133 (2014). doi:10.1007/s00339-014-8633-7

    Article  ADS  Google Scholar 

  10. J. Byskov-Nielsen, J.M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A 103(2), 447 (2011). doi:10.1007/s00339-011-6363-7

    Article  ADS  Google Scholar 

  11. M.V. Shugaev, C.Y. Shih, E.T. Karim, C. Wu, L.V. Zhigilei, Appl. Surf. Sci. 417, 54–63 (2017). doi:10.1016/j.apsusc.2017.02.030

    Article  ADS  Google Scholar 

  12. C.Y. Shih, C. Wu, M.V. Shugaev, L.V. Zhigilei, J. Coll. Interf. Sci. 489, 3 (2017). doi:10.1016/j.jcis.2016.10.029

    Article  ADS  Google Scholar 

  13. M.E. Shaheen, J.E. Gagnon, B.J. Fryer, J. Appl. Phys. 113(21), 213106 (2013). doi:10.1063/1.4808455

    Article  ADS  Google Scholar 

  14. S. Barcikowski, A. Hahn, A.V. Kabashin, B.N. Chichkov, Appl. Phys. A 87(1), 47 (2007). doi:10.1007/s00339-006-3852-1

    Article  ADS  Google Scholar 

  15. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, P.E. Martin, in SPIE LASE, ed. by G. Hennig, X. Xu, B. Gu, Y. Nakata (International Society for Optics and Photonics, Bellingham, 2012)

  16. J. Lopez, G. Mincuzzi, R. Devillard, Y. Zaouter, C. Hönninger, E. Mottay, R. Kling, J. Laser Appl. 27(S2), S28008 (2015). doi:10.2351/1.4906479

    Article  Google Scholar 

  17. B. Jaeggi, B. Neuenschwander, S. Remund, T. Kramer, SPIE Proc. 10091, 100910J–1 (2017). doi:10.1117/12.2253696

    Google Scholar 

  18. P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114(17), 7618 (2010). doi:10.1021/jp911243a

    Article  Google Scholar 

  19. A. Kanitz, J.S. Hoppius, E.L. Gurevich, A. Ostendorf, Phys. Proc. 83, 114 (2016)

    Article  ADS  Google Scholar 

  20. M.R. Kalus, N. Bärsch, R. Streubel, E. Gökce, S. Barcikowski, B. Gökce, Phys. Chem. Chem. Phys. 19(10), 7112 (2017)

    Article  Google Scholar 

  21. A. Menéndez-Manjón, P. Wagener, S. Barcikowski, J. Phys. Chem. C 115(12), 5108 (2011). doi:10.1021/jp109370q

    Article  Google Scholar 

  22. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, J. Opt. Soc. Am. B 14(10), 2716 (1997). doi:10.1364/JOSAB.14.002716

    Article  ADS  Google Scholar 

  23. S.I. Anisimov, B. Rethfeld, in Theory of ultrashort laser pulse interaction with a metal, ed. by Sergei I. Anisimov and Baerbel Rethfeld (SPIE, 1997), pp. 192–203. doi: DOIurl10.1117/12.271674

  24. L.V. Zhigilei, Z. Lin, D.S. Ivanov, The Journal of Physical Chemistry C 113(27), 11892 (2009). doi:10.1021/jp902294m

    Article  Google Scholar 

  25. P.B. Corkum, F. Brunel, N.K. Sherman, T. Srinivasan-Rao, Phys. Rev. Lett. 61(25), 2886 (1988). doi:10.1103/PhysRevLett.61.2886

    Article  ADS  Google Scholar 

  26. N.N. Nedialkov, S.E. Imamova, P.A. Atanasov, J. Phys. D 37(4), 638 (2004). doi:10.1088/0022-3727/37/4/016

    Article  ADS  Google Scholar 

  27. I. Mingareev, A. Horn, Appl. Phys. A 92(4), 917 (2008). doi:10.1007/s00339-008-4562-7

    Article  ADS  Google Scholar 

  28. B.H. Christensen, K. Vestentoft, P. Balling, Appl. Surf. Sc. 253(15), 6347 (2007). doi:10.1016/j.apsusc.2007.01.045

    Article  ADS  Google Scholar 

  29. R. Streubel, S. Barcikowski, B. Gökce, Opt. Lett. 41(7), 1486 (2016). doi:10.1364/OL.41.001486

    Article  ADS  Google Scholar 

  30. M.E. Povarnitsyn, T.E. Itina, P.R. Levashov, K.V. Khishchenko, Phys. chem. chem. phys. 15(9), 3108 (2013). doi:10.1039/c2cp42650a

    Article  Google Scholar 

  31. A. Tamura, A. Matsumoto, K. Fukami, N. Nishi, T. Sakka, J. Appl. Phys. 117(17), 173304 (2015). doi:10.1063/1.4919729

    Article  ADS  Google Scholar 

  32. A. De Giacomo, M. Dell’Aglio, R. Gaudiuso, S. Amoruso, O. De Pascale, Spectr. Acta B 78, 1 (2012). doi:10.1016/j.sab.2012.10.003

    Article  ADS  Google Scholar 

  33. M. DellAglio, R. Gaudiuso, O. De Pascale, A. De Giacomo, Appl. Surf. Sci. 348, 4 (2015). doi:10.1016/j.apsusc.2015.01.082

    Article  Google Scholar 

  34. C.Y. Shih, M.V. Shugaev, C. Wu, L.V. Zhigilei, J. Phys. Chem. C 121(30), 16549 (2017). doi:10.1021/acs.jpcc.7b02301

    Article  Google Scholar 

  35. C. Thaury, F. Quéré, J.P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Réau, P. d’Oliveira, P. Audebert, R. Marjoribanks, P. Martin, Nat. Phys. 3(6), 424 (2007). doi:10.1038/nphys595

    Article  Google Scholar 

  36. L.V. Zhigilei, D.S. Ivanov, Appl. Surf. Sci. 248(1–4), 433 (2005). doi:10.1016/j.apsusc.2005.03.062

    Article  ADS  Google Scholar 

  37. H. Hu, T. Liu, H. Zhai, Opt. Exp. 23(2), 628 (2015). doi:10.1364/OE.23.000628

    Article  ADS  Google Scholar 

  38. A. De Bonis, T. Lovaglio, A. Galasso, A. Santagata, R. Teghil, Appl. Surf. Sci. 353, 433 (2015). doi:10.1016/j.apsusc.2015.06.145

    Article  ADS  Google Scholar 

  39. N.M. Bulgakova, V.P. Zhukov, A.Y. Vorobyev, C. Guo, Appl. Phys. A 92(4), 883 (2008). doi:10.1007/s00339-008-4568-1

    Article  ADS  Google Scholar 

  40. M.T. Lee, de Souza, G L C, L.E. Machado, L.M. Brescansin, A.S. dos Santos, R.R. Lucchese, R.T. Sugohara, M.G.P. Homem, I.P. Sanches, I. Iga. J. Chem. Phys. 136(11), 114311 (2012). doi:10.1063/1.3695211

    Article  ADS  Google Scholar 

  41. J.R. Vacher, F. Jorand, N. Blin-Simiand, S. Pasquiers, Chem. Phys. Lett. 434(4–6), 188 (2007). doi:10.1016/j.cplett.2006.12.014

    Article  ADS  Google Scholar 

  42. Y. Itikawa, J. Phys. Chem. Ref. Data 34(1), 1 (2005). doi:10.1063/1.1799251

    Article  ADS  Google Scholar 

  43. M.G.P. Homem, I. Iga, J.R. Ferraz, A.S. dos Santos, L.E. Machado, de Souza, G. L. C., L.M. Brescansin, R.R. Lucchese, M.T. Lee, Phys. Rev. A 91(1) (2015). DOI: 10.1103/PhysRevA.91.012713

  44. W.S. Fann, R. Storz, H.W.K. Tom, J. Bokor, Phys. Rev. Lett. 68(18), 2834 (1992). doi:10.1103/PhysRevLett.68.2834

    Article  ADS  Google Scholar 

  45. C. Suarez, W.E. Bron, T. Juhasz, Phys. Rev. Lett. 75(24), 4536 (1995). doi:10.1103/PhysRevLett.75.4536

    Article  ADS  Google Scholar 

  46. C. Frischkorn, M. Wolf, Chem. Rev. 106(10), 4207 (2006). doi:10.1021/cr050161r

    Article  Google Scholar 

  47. E. Nibbering, M.A. Franco, B.S. Prade, G. Grillon, C. Le Blanc, A. Mysyrowicz, Opt. Comm. 119(5–6), 479 (1995). doi:10.1016/0030-4018(95)00394-N

    Article  ADS  Google Scholar 

  48. R.L. Sutherland, D.G. McLean, S. Kirkpatrick, Handbook of nonlinear optics, 2nd edn. (Marcel Dekker, New York, op. 2003)

  49. S. Couris, M. Renard, O. Faucher, B. Lavorel, R. Chaux, E. Koudoumas, X. Michaut, Chem. Phys. Lett. 369(3–4), 318 (2003). doi:10.1016/S0009-2614(02)02021-3

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the German Science Foundatin (DFG) within the research project GU1075/3. The authors gratefully acknowledge fruitful discussions with N. M. Bulgakova, D. Förster, J. Stähler, and C. Aroca. We gratefully acknowledge the support by A. Berger who made available the four ICCD camera setup.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kanitz.

Appendix

Appendix

See Table 2.

Table 2 Macroscopic characteristics of used liquids

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanitz, A., Hoppius, J.S., Fiebrandt, M. et al. Impact of liquid environment on femtosecond laser ablation. Appl. Phys. A 123, 674 (2017). https://doi.org/10.1007/s00339-017-1280-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1280-z

Navigation