Skip to main content

Advertisement

Log in

Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

To investigate how a dual- or single-frequency ultrasonic reactor changes the morphology and phase composition of hydroxyapatite nanoparticles (nHAPs), we designed and constructed the preparation of nHAPs using dual- or single-frequency ultrasonic devices, i.e., the single frequency ultrasonic generator with ultrasonic horn (25 kHz), the ultrasonic bath (40 kHz) and the dual-frequency sonochemical systems combined with the ultrasonic horn and the ultrasonic bath simultaneously (25 + 40 kHz). The results showed that the sonicated samples displayed a more uniform shape with less agglomeration than non-sonicated sample. The rod-shaped particles with 1.66 stoichiometry and without a second phase were synthesized successfully in the ultrasonic bath or horn systems. The nHAPs obtained from the dual-frequency ultrasonic systems exhibited a regular rod-shaped structure with better dispersion and more uniform shapes than those of obtained in either ultrasonic bath or horn systems. Additionally, the size of rod-shaped particles obtained in the dual-frequency ultrasound with a mean width of 35 nm and a mean length of 64 nm was smaller than other samples. A possible mechanism is that the dual-frequency ultrasound significantly enhances the cavitation yield over single frequency ultrasound and thus improves the dispersion of particles and reduces the size of the crystals. In addition, irregular holes can be observed in the nanoparticles obtained in the dual-frequency ultrasound. Therefore, the dual-frequency ultrasonic systems are expected to become a convenient, efficient and environmentally friendly synthetic technology to obtain well-defined nHAPs for specific biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Deng, R. James, C.T. Laurencin, S.G. Kumbar, IEEE Trans. Nanobiosci. 11, 3 (2012)

    Article  Google Scholar 

  2. R.E. McMahon, L. Wang, R. Skoracki, A.B. Mathur, J. Biomed. Mater. Res. B Appl. Biomater. 101B, 387 (2013)

    Article  Google Scholar 

  3. C. Laurencin, Y. Khan, S.F. El-Amin, Expert Rev. Med. Devices 3, 49 (2006)

    Article  Google Scholar 

  4. M.W. Mariscalco, R.A. Magnussen, D. Mehta, T.E. Hewett, D.C. Flanigan, C.C. Kaeding, Am. J. Sports Med. 42, 492 (2014)

    Article  Google Scholar 

  5. P. Rouhani, N. Taghavinia, S. Rouhani, Ultrason. Sonochem. 17, 853 (2010)

    Article  Google Scholar 

  6. Z. Zhao, M. Espanol, J. Guillem-Marti, D. Kempf, A. Diez-Escudero, M.P. Ginebra, Nanoscale 8, 1595 (2016)

    Article  ADS  Google Scholar 

  7. L.-Y. Cao, C.-B. Zhang, J.-F. Huang, Ceram. Int. 31, 1041 (2005)

    Article  Google Scholar 

  8. N. Eliaz, T.M. Sridhar, U. Kamachi Mudali, B. Raj, Surf. Eng. 21, 238 (2005)

    Article  Google Scholar 

  9. P. Kaur, A. Maria, J. Maxillofac. Oral. Surg. 12, 51 (2013)

    Article  Google Scholar 

  10. M. Eriksson, M. Andersson, E. Adolfsson, E. Carlström, Powder Metall. 49, 70 (2006)

    Article  Google Scholar 

  11. E. Andronescu, A. Ficai, M.G. Albu, V. Mitran, M. Sonmez, D. Ficai, R. Ion, A. Cimpean, Technol. Cancer Res. Treat 12, 275 (2013)

    Article  Google Scholar 

  12. Y. Han, S. Li, X. Cao, L. Yuan, Y. Wang, Y. Yin, T. Qiu, H. Dai, X. Wang, Sci. Rep. 4, 7134 (2014)

    Article  ADS  Google Scholar 

  13. M.A. Giardina, M.A. Fanovich, Ceram. Int. 36, 1961 (2010)

    Article  Google Scholar 

  14. C.-S. Chien, Y.-C. Hung, T.-F. Hong, C.-C. Wu, T.-Y. Kuo, T.-M. Lee, T.-Y. Liao, H.-C. Lin, C.-H. Chuang, Appl. Phys. A 123, 204 (2017)

    Article  ADS  Google Scholar 

  15. V. Sanyal, C.R. Raja, Appl. Phys. A 122, 132 (2016)

    Article  ADS  Google Scholar 

  16. X.-Y. Zhao, Y.-J. Zhu, F. Chen, B.-Q. Lu, J. Wu, CrystEngComm 15, 206 (2013)

    Article  Google Scholar 

  17. M.S. Vázquez, O. Estevez, F. Ascencio-Aguirre, R. Mendoza-Cruz, L. Bazán-Díaz, C. Zorrila, R. Herrera-Becerra, Appl. Phys. A 122, 868 (2016)

    Article  ADS  Google Scholar 

  18. E.S. Ahn, N.J. Gleason, A. Atsushi Nakahira, J.Y. Ying, Nano. Lett. 1, 149 (2001)

    Article  ADS  Google Scholar 

  19. V.H. Ingole, K.H. Hussein, A.A. Kashale, K.P. Gattu, S.S. Dhanayat, A. Vinchurkar, J.Y. Chang, A.V. Ghule, ChemistrySelect. 1, 3901 (2016)

    Article  Google Scholar 

  20. S. Catros, F. Guillemot, E. Lebraud, C. Chanseau, S. Perez, R. Bareille, J. Amédée, J.C. Fricain, Irbm 31, 226 (2010)

    Article  Google Scholar 

  21. H.C. Park, D.J. Baek, Y.M. Park, S.Y. Yoon, R. Stevens, J. Mater. Sci. 39, 2531 (2004)

    Article  ADS  Google Scholar 

  22. F. Bakan, O. Laçin, H. Sarac, Powder Technol. 233, 295 (2013)

    Article  Google Scholar 

  23. Y.Q. Chen, X.F. Xing, W.M. Gao, Key Eng. Mater. 633, 17 (2014)

    Article  Google Scholar 

  24. N.N. Panda, K. Pramanik, L.B. Sukla, Bioprocess Biosyst. Eng. 37, 433 (2014)

    Article  Google Scholar 

  25. W.Y. Zhou, M. Wang, W.L. Cheung, B.C. Guo, D.M. Jia, J. Mater. Sci. Mater. Med. 19, 103 (2008)

    Article  Google Scholar 

  26. X.-Y. Zhao, Y.-J. Zhu, C. Qi, F. Chen, B.-Q. Lu, J. Zhao, J. Wu, Chem. Asian J. 8, 1313 (2013)

    Article  Google Scholar 

  27. M. Sadat-Shojai, M.-T. Khorasani, E. Dinpanah-Khoshdargi, A. Jamshidi, Acta Biomater. 9, 7591 (2013)

    Article  Google Scholar 

  28. D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, J. Phys. Chem. C 117, 2382 (2013)

    Article  Google Scholar 

  29. D. Gopi, J. Indira, L. Kavitha, M. Sekar, U.K. Mudali, Spectrochim. Acta A Mol. Biomol. Spectrosc. 93, 131 (2012)

    Article  ADS  Google Scholar 

  30. F. Castro, S. Kuhn, K. Jensen, A. Ferreira, F. Rocha, A. Vicente, J.A. Teixeira, Chem. Eng. J. 215–216, 979 (2013)

    Article  Google Scholar 

  31. T.A. Hassan, V.K. Rangari, S. Jeelani, IJ NBM. 5 (2014)

  32. P.A. Tatake, A.B. Pandit, Chem. Eng. Sci. 57, 4987 (2002)

    Article  Google Scholar 

  33. H.-L. Liu, C.-M. Hsieh, Ultrason. Sonochem. 16, 431 (2009)

    Article  Google Scholar 

  34. D.M. Kirpalani, K.J. McQuinn, Ultrason. Sonochem. 13, 1 (2006)

    Article  Google Scholar 

  35. P.R. Gogate, I.Z. Shirgaonkar, M. Sivakumar, P. Senthilkumar, N.P. Vichare, A.B. Pandit, AIChE J. 47, 2526 (2001)

    Article  Google Scholar 

  36. N. Varadarajan, R. Balu, D. Rana, M. Ramalingam, T.S.S. Kumar, J. Biomater. Tissue Eng. 4, 295 (2014)

    Article  Google Scholar 

  37. M. Kavitha, R. Subramanian, K.S. Vinoth, R. Narayanan, G. Venkatesh, N. Esakkiraja, Powder Technol. 271, 167 (2015)

    Article  Google Scholar 

  38. S. Utara, J. Klinkaewnarong, Ceram. Int. 41, 14860 (2015)

    Article  Google Scholar 

  39. H. Bouyarmane, A. Gouza, S. Masse, S. Saoiabi, A. Saoiabi, T. Coradin, A. Laghzizil, Colloids Surf. A Physicochem. Eng. Asp. 495, 187 (2016)

    Article  Google Scholar 

  40. K. Kandori, T. Kuroda, S. Togashi, E. Katayama, J. Phys. Chem. B 115, 653 (2011)

    Article  Google Scholar 

  41. A. Binnaz, H. Yoruç, Dig. J. Nanomater. Bio. 4, 73 (2009)

    Google Scholar 

  42. L. Fernandes Cóta, K.P.M. Licona, J.D.N. Lunz, A.A. Ribeiro, L.M. Alonso, M.V. De Oliveira, L.C. Pereira, Mater. Sci. Forum 869, 896 (2016)

    Article  Google Scholar 

  43. A.B.H. Yoruç, Y. Ipek, Acta Phys. Pol., A 121, 230 (2012)

    Article  Google Scholar 

  44. N.K. Nga, L.T. Giang, T.Q. Huy, P.H. Viet, C. Migliaresi, Colloids Surf. B 116, 666 (2014)

    Article  Google Scholar 

  45. N.K. Nguyen, M. Leoni, D. Maniglio, C. Migliaresi, J. Biomater. Appl. 28, 49 (2012)

    Article  Google Scholar 

  46. M. Sadat-Shojai, M.T. Khorasani, A. Jamshidi, J. Cryst. Growth 361, 73 (2012)

    Article  ADS  Google Scholar 

  47. N.Y. Mostafa, Mater. Chem. Phys. 94, 333 (2005)

    Article  Google Scholar 

  48. Y. Han, S. Li, X. Wang, I. Bauer, M. Yin, Ultrason. Sonochem. 14, 286 (2007)

    Article  Google Scholar 

  49. R. Feng, Y. Zhao, C. Zhu, T.J. Mason, Ultrason. Sonochem. 9, 231 (2002)

    Article  Google Scholar 

  50. T. Liang, J. Qian, Y. Yuan, C. Liu, J. Mater. Sci. 48, 5334 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Elsevier Webshop (http://webshop.elsevier.com/languageservices) for its linguistic assistance during the preparation of this manuscript. This work was financially supported by Guangdong Department of Water Resources Science and Technology Innovation Project (No. 2015-20) and Guangdong Provincial Archives Research Project(No. YDK-141-2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-guang Bi.

Ethics declarations

Conflict of interest

I would like to declare on behalf of my co-authors that no any conflict of interest exits in the submission of this manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, St., Yu, H., Liu, D. et al. Comparison of morphology and phase composition of hydroxyapatite nanoparticles sonochemically synthesized with dual- or single-frequency ultrasonic reactor. Appl. Phys. A 123, 642 (2017). https://doi.org/10.1007/s00339-017-1243-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1243-4

Navigation