Skip to main content
Log in

Enhanced electrical characteristics of a-Si thin films by hydrogen passivation with Nd3+:YAG laser treatment in underwater for photovoltaic applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Post deposition underwater treatment with a nanosecond Nd3+:YAG laser is proposed and demonstrated for the passivation of electrical defects in 400–1000 nm-thick a-Si thin films needed for solar cells. The proposed pulsed laser beam-overlap technique also allows simultaneous annealing and texturing. Atomic hydrogen, oxygen, and hydroxyl radicals activated by the breakdown of water by laser heating passivate the dangling bonds in the crystal grains, improving the solar cell performance. The presence of hydrogen observed after water annealing using X-ray photo electron spectroscopy (XPS), Raman spectroscopy, and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) shows that the passivation improvement is caused by diffusion of atomic hydrogen. After underwater annealing, relative improvement in the life time of minority carriers was measured to be approximately 13% and the efficiency of n-aSi/p-cSi solar cells is found to be increased (~2 to 3%) when compared to that in air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W. Fuhs, in Charge Transport in Disordered Solids with Applications in Electronics, ed. by S. Baranovski (Wiley, New York, 2006), p. 97

    Chapter  Google Scholar 

  2. G.N. Tiwari, R.K. Mishra, Advanced Renewable Energy Sources (Royal Society of Chemistry, London, 2011), pp. 60–80

    Google Scholar 

  3. I.A. Palani, N.J. Vasa, M. Singaperumal, T. Okada, J. Laser Micro Nanoeng. 5, 150 (2010)

    Article  Google Scholar 

  4. A. Akkaya, G. Akta, Mater. Lett. 22, 271 (1995)

    Article  Google Scholar 

  5. F. Gaspari, in Optoelectronics—Materials and Techniques, ed. by P. Pradeep (Intech, Croatia, 2011), p. 3

    Google Scholar 

  6. F. Edelman, A. Chack, R. Weil, R. Beserman, YuL Khait, P. Werner, B. Rech, T. Roschek, R. Carius, H. Wagner, W. Beyer, Solar Energy Mater. Solar Cells 77, 125 (2003)

    Article  Google Scholar 

  7. A. Hammad, E. Amanatides, D. Mataras, D. Rapakoulias, Thin Solid Films 451, 255 (2004)

    Article  ADS  Google Scholar 

  8. S. Martinuzzi, I. Pierichaud, F. Warcho, Solar Energy Mater. Solar Cells 80, 343 (2003)

    Article  Google Scholar 

  9. S.J. Pearton, J.W. Corbett, M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 2013), pp. 9–10

    Google Scholar 

  10. J. Serra, J. Andreu, G. Sardin, C. Roch, J.M. Asensi, J. Bertomeu, J. Esteve, in Hydrogen in Semiconductors, ed. by M. Stutzmann, J. Chevallier (Elsevier, The Netherlands, 2012), p. 269

    Google Scholar 

  11. L. Serenelli, R. Chierchia, M. Izzi, M. Tucci, L. Martini, D. Caputo, R. Asquini, G. Cesare, Energy Procedia 60, 102 (2014)

    Article  Google Scholar 

  12. A. Descoeudres, L. Barraud, S. Wolf, B. Strahm, D. Lachenal, C. Guérin, Z.C. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovsky, C. Ballif, Appl. Phys. Lett. 99, 123506 (2011)

    Article  ADS  Google Scholar 

  13. Y. Uraoka, M. Miyashita, Y. Sugawara, H. Yano, T. Hatayama, T. Fuyuki, T. Sameshima, Jpn. J. Appl. Phys. 45, 5657 (2006)

    Article  ADS  Google Scholar 

  14. Y. Shika, T. Bessho, Y. Okabe, H. Ogata, S. Kamo, K. Kitahara, A. Hara, Jpn. J. Appl. Phys. 52, 03BB01 (2013)

    Article  Google Scholar 

  15. E. Machida, M. Horita, Y. Ishikawa, Y. Uraoka, H. Ikenoue, Appl. Phys. Lett. 101, 252106 (2012)

    Article  ADS  Google Scholar 

  16. Y.E.B. Vidhya, N.J. Vasa, J. Photon, Energy 6(1), 014001 (2016)

    Google Scholar 

  17. M.Y. Bashoutia, K. Sardashti, S.W. Schmitt, M. Pietscha, J. Risteinb, H. Haickc, S.H. Christiansen, Prog. Surf. Sci. 88(1), 39 (2013)

    Article  ADS  Google Scholar 

  18. B.S. Swain, B.P. Swain, N.M. Hwang, J. Appl. Phys. 108, 073709 (2010)

    Article  ADS  Google Scholar 

  19. A.H.M. Smets, W.M.M. Kessels, M.C.M. van de Sanden, Appl. Phys. Lett. 82, 1547 (2003)

    Article  ADS  Google Scholar 

  20. A.A. Langford, M.L. Fleet, B.P. Nelson, W.A. Lanford, N. Maley, Phys. Rev. B 45, 13367 (1999)

    Article  ADS  Google Scholar 

  21. U. Kroll, J. Meier, A. Shah, S. Mikhailov, J. Weber, J. Appl. Phys. 80, 4971 (1996)

    Article  ADS  Google Scholar 

  22. V.A. Volodin, D.I. Koshelev, J. Raman Spectrosc. 44, 1760 (2013)

    Article  ADS  Google Scholar 

  23. Y.E.B. Vidhya, R. Sriram, N.J. Vasa, J Laser Micro Nanoeng. 10(3), 334 (2015)

    Article  Google Scholar 

  24. J.E. Mahan, T.W. Ekstedt, R.I. Frank, R. Kaplow, IEEE Trans. Electron. Dev. 26 (1979)

Download references

Acknowledgements

This work was partly supported by the Science and Engineering Research Board, DST [Project SR/S3/MERC/0085/2010 (G)]. The authors are also thankful to the SAIF, Departments of Metallurgy and Materials Engineering and Physics in IIT Madras for providing the various measurement facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Esther Blesso Vidhya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vidhya, Y.E.B., Vasa, N.J. Enhanced electrical characteristics of a-Si thin films by hydrogen passivation with Nd3+:YAG laser treatment in underwater for photovoltaic applications. Appl. Phys. A 123, 528 (2017). https://doi.org/10.1007/s00339-017-1130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1130-z

Navigation