Skip to main content
Log in

Electron-transporting small molecule/o-xylene hybrid additives to boost the performance of simplified inverted polymer solar cells

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electron-transporting small molecule bathophenanthroline (Bphen) together with o-xylene has been used as hybrid additives to improve the performance of simplified inverted polymer solar cells employing ITO alone as cathode and photoactive layer based on polymer [[2,6′-4,8-di(5-ethylhexylthienyl)benzo[1,2-b;3,3-b] dithiophene] [3-fluoro-2[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7-Th) and (He et al., Nat. Photon. 9:174, 2015)-phenyl C71-butyric acid methyl ester (PC71BM). Because the Bphen additive could spontaneously aggregate onto the indium tin oxide (ITO) cathode during spin coating, the mixed solution containing PTB7-Th, PC71BM, and Bphen, thereby forming a thin cathode-modifying layer, the ternary blend PTB7-Th:PC71BM:Bphen functioned similar to a layered polyethylenimine ethoxylated (PEIE, a conventional cathode-modifying material)/binary blend PTB7-Th:PC71BM combination. The o-xylene additive was confirmed to enrich the distribution of PTB7-Th donor towards the bottom area of photoactive layer, thereby benefiting the charge collection in inverted structure. With the o-xylene optimization, the PTB7-Th:PC71BM:Bphen blend thin film showed a power conversion efficiency (PCE) of 5.87% in simplified inverted structure of ITO/photoactive layer/MoO3/Ag, much higher than that (4.21%) of the PTB7-Th:PC71BM blend thin film. The current research can be considered as a useful attempt towards fabricating low-cost photovoltaic devices without marked loss in PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. N.S. Saraciftci, L. Smilowitz, A.J. Heeger, F. Wudl, Science 258, 1474 (1992)

    Article  ADS  Google Scholar 

  2. G. Yu, J. Gao, J.C. Hummelen, F. Wudl, A.J. Heeger, Science 270, 1789 (1995)

    Article  ADS  Google Scholar 

  3. P. Cheng, Y.F. Li, X.W. Zhan, Energy Environ. Sci. 7, 2005 (2014)

    Article  Google Scholar 

  4. H.Q. Zhou, Y. Zhang, C.K. Mai, S.D. Collins, G.C. Bazan, T.Q. Nguyen, A.J. Heeger, Adv. Mater. 27, 1767 (2015)

    Article  Google Scholar 

  5. C.C. Chen, W.H. Chang, K. Yoshimura, K. Ohya, J.B. You, J. Gao, Z. Hong, Y. Yang, Adv. Mater. 26, 5670 (2014)

    Article  Google Scholar 

  6. Z.C. He, B. Xiao, F. Liu, H.B. Wu, Y.L. Yang, S. Xiao, C. Wang, T.P. Russell, Y. Cao, Nat. Photon. 9, 174 (2015)

    Article  ADS  Google Scholar 

  7. Y.H. Liu, J.B. Zhao, Z.K. Li, C. Mu, W. Ma, H.W. Hu, K. Jiang, H.R. Lin, H. Ade, H. Yan, Nat. Commun. 5, 5293 (2014)

    Article  ADS  Google Scholar 

  8. R. Sondergaard, M. Hosel, D. Angmo, T. Larsen-Olsen, F.C. Krebs, Mater. Today 15, 36 (2012)

    Article  Google Scholar 

  9. Y.Z. Lin, J.Y. Wang, Z.G. Zhang, H.T. Bai, Y.F. Li, D.B. Zhu, X.W. Zhan, Adv. Mater. 27, 1170 (2015)

    Article  Google Scholar 

  10. X.W. Zhan, Z. Tan, B. Domercq, Z. An, X. Zhang, S. Barlow, Y. Li, D. Zhu, B. Kippelen, S.R. Marder, J. Am. Chem. Soc. 129, 7246 (2007)

    Article  Google Scholar 

  11. Y. Xie, F. Zabihi, M. Eslamian, J. Photon. Energ. 6, 045502 (2016)

    Google Scholar 

  12. Q. Wang, Y. Xie, F. Soltani-Kordshuli, M. Eslamian, Renew. Sust. Energ. Rev 56, 347 (2016)

    Article  Google Scholar 

  13. S.K. Hau, H.-L. Yip, A.K.-Y. Jen, Polym. Rev. 50, 474 (2010)

    Article  Google Scholar 

  14. X. Gong, Polymer 53, 5437 (2012)

    Article  Google Scholar 

  15. Z. Xu, L.M. Chen, G.W. Yang, C.H. Huang, J.H. Hou, Y. Wu, G. Li, C.S. Hsu, Y. Yang, Adv. Funct. Mater 19, 1227 (2009)

    Article  Google Scholar 

  16. M.C. Quiles, T. Ferenczi, T. Agostinelli, P.G. Etchegoin, Y.K. Kim, T.D. Anthopoulos, P.N. Stavrinou, D.D.C. Bradley, J. Nelson, Nat. Mater. 7, 158 (2008)

    Article  ADS  Google Scholar 

  17. Y.M. Sun, J.H. Seo, C.J. Takacs, J. Seifter, A.J. Heeger, Adv. Mater. 23, 1679 (2011)

    Article  Google Scholar 

  18. L. Nian, W.Q. Zhang, N. Zhu, L.L. Liu, Z.Q. Xie, H.B. Wu, F. Würthner, Y.G. Ma, J. Am. Chem. Soc. 137, 6995 (2015)

    Article  Google Scholar 

  19. J. Li, X.D. Huang, J.Y. Yuan, K.Y. Lu, W. Yue, W.L. Ma, Org. Electron 14, 2164 (2013)

    Article  Google Scholar 

  20. Z.C. He, C.M. Zhong, S.J. Su, M. Xu, H.B. Wu, Y. Cao, Nat. Photon. 6, 591 (2012)

    ADS  Google Scholar 

  21. Y.H. Zhou, C.F. Hernandez, J. Shim, J. Meyer, A.J. Giordano, H. Li, P. Winget, T. Papadopoulos, H. Cheun, J. Kim, M. Fenoll, A. Dindar, W. Haske, E. Najafabadi, T.M. Khan, H. Sojoudi, S. Barlow, S. Graham, J.L. Brédas, S.R. Marder, A. Kahn, B. Kippelen, Science 336, 327 (2012)

    Article  ADS  Google Scholar 

  22. C.Z. Li, C.Y. Chang, Y. Zang, H.X. Ju, C.C. Chueh, P.W. Liang, N. Cho, D.S. Ginger, A.K.Y. Jen, Adv. Mater 26, 6262 (2014)

    Article  Google Scholar 

  23. G. Li, R. Zhu, Y. Yang, Nat. Photon. 6, 153 (2012)

    Article  ADS  Google Scholar 

  24. D. Ma, M.L. Lv, M. Lei, J. Zhu, H. Wang, X. Chen, ACS Nano 8, 1601 (2014)

    Article  Google Scholar 

  25. Z.S. Peng, Y.D. Zhang, Y.X. Xia, K. Xiong, C.S. Cai, L.P. Xia, Z.H. Hu, K. Zhang, F. Huang, L.T. Hou, J. Mater. Chem. A 3, 20500 (2015)

    Article  Google Scholar 

  26. D. Qin, P. Cheng, Y. Wang, Y. Fan, X. Zhan, J. Mater. Chem. C 4, 1051 (2015)

    Article  Google Scholar 

  27. H.H. Liao, J.M. Chen, Z. Xu, G. Li, Y. Yang, Appl. Phys. Lett. 92, 173303 (2008)

    Article  ADS  Google Scholar 

  28. C.M. Sun, X.D. Li, G.J. Wang, P.D. Li, W.J. Zhang, T.G. Jiu, N.Q. Jiang, J.F. Fang, RSC Adv. 4, 19529 (2014)

    Article  Google Scholar 

  29. J.S. Kim, R.H. Friend, F. Cacialli, J. Appl. Phys 86, 2774 (1999)

    Article  ADS  Google Scholar 

  30. J. Huang, Y. Hsiao, E. Richard, C. Chen, P. Chen, G. Li, C. Chu, Y. Yang, Appl. Phys. Lett. 103, 2466 (2013)

    Google Scholar 

  31. A.L. Shi, Y.Q. Li, X.C. Jiang, Z.S. Ma, Q.K. Wang, Z.Y. Guo, D.D. Zhang, S.T. Lee, J.X. Tang, Appl. Phys. Lett. 105, 053305 (2014)

    Article  ADS  Google Scholar 

  32. B. Ebenhoch, S.A.J. Thomson, K. Genevicius, G. Juška, I.D.W. Samuel, Org. Electron 22, 62 (2015)

    Article  Google Scholar 

  33. C. Sprau, F. Buss, M. Wagner, D. Landerer, M. Koppitz, A. Schulz, D. Bahro, W. Schabel, P. Scharferb, A. Colsmann, Energ. Environ. Sci. 8, 2744 (2015)

  34. X. Guo, M.J. Zhang, C.H. Cui, J.H. Hou, Y.F. Li, ACS Appl. Mater. Interfaces 6, 8190 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

Prof. Dashan Qin is grateful for financial support from Hebei province (Grant No. E2013202119). The authors deeply appreciate Prof. Xiaowei Zhan for providing experimental conditions and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dashan Qin or Jidong Zhang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 573 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, D., Cao, H. & Zhang, J. Electron-transporting small molecule/o-xylene hybrid additives to boost the performance of simplified inverted polymer solar cells. Appl. Phys. A 123, 307 (2017). https://doi.org/10.1007/s00339-017-0940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0940-3

Keywords

Navigation