Skip to main content
Log in

Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

CdS nanobelts (NBs) were synthesized by vapor transport of CdS powders. The growth was carried out without any catalyst on quartz and Si (100) substrates. The synthesized CdS NBs were examined by transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM) and selected area electron diffraction (SAED), high-resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), energy dispersion analysis of X-ray (EDAX), spectrophotometer, and photoluminescence spectroscopy. CdS NBs were indexed as hexagonal wurtzite structure. The growth was via vapor–solid growth mechanism and along the [100] direction. The refractive index was evaluated in the transparent region, as suggested by Swanepoel, using the envelope method. The refractive index values and the extinction coefficient were decreased by increasing the wavelength. The calculated optical band gap was 2.50 eV. The photoluminescence (PL) spectrum of the synthesized CdS NBs exhibited a green emission peak at 510 nm and a broad red emission peak at 696 nm. The conductivity measurements were achieved, in the temperature range from 300 to 600 K, using the conventional two-probe technique. Two different slopes with different activation energies of 0.618 and 0.215 eV were obtained. The CdS NBs are likely being novel functional materials. Thus, they can be used in the manufacture of innovative optoelectronic nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Wang, W. Liu, H. Yang, X. Li, N. Li, R. Shi, J.H. Zhao Yu, Acta Mater 59, 1291–1299 (2011)

    Article  Google Scholar 

  2. B. Ahmed, S. Kumar, S. Kumar, A.K. Ojha, J. Alloys Compd. 679, 324–334 (2016)

    Article  Google Scholar 

  3. A. Arabzadeh, A. Salimi, J. Colloid Interface Sci. 479, 43–54 (2016)

    Article  Google Scholar 

  4. L. Xu, Y. Su, D. Cai, Y.Q. Chen, Y. Feng, Mater. Lett. 60, 1420–1424 (2006)

    Article  Google Scholar 

  5. T. Zhai, X. Fang, L. Li, Y. Bando, D. Golberg, Nanoscale 2, 168–187 (2010)

    Article  ADS  Google Scholar 

  6. B. Piccione, C.-H. Cho, L.K. van Vugt, R. Agarwal, Nat. Nanotechnol. 7, 640–645 (2012)

    Article  ADS  Google Scholar 

  7. Z.Y. Fan, H. Razavi, J. Do, A. Moriwaki, O. Ergen, Y. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, K. Yu, M. Wu, J.W. Ager, A. Javey, Nat. Mater. 8, 648–653 (2009)

    Article  ADS  Google Scholar 

  8. X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Nature 421, 241–245 (2003)

    Article  ADS  Google Scholar 

  9. R.M. Ma, L. Dai, H.B. Huo, W.J. Xu, G.G. Qin, Nano. Lett. 7, 3300–3304 (2007)

    Article  ADS  Google Scholar 

  10. L. Li, P. Wu, X. Fang, T. Zhai, L. Dai, M. Liao, Y. Koide, H. Wang, Y. Bando, D. Golberg, Adv. Mater. 22, 3161–3165 (2010)

    Article  Google Scholar 

  11. P. Wang, P. Deng, Y. Nie, Y. Zhao, Y. Zhang, L. Xing, X. Xue, Nanotechnology 25, 075501–075506 (2014)

    Article  ADS  Google Scholar 

  12. S.H. Mohamed, M. El-Hagary, Mater. Chem. Phys. 143, 178–183 (2013)

    Article  Google Scholar 

  13. H.Y. Sun, X.H. Li, Y. Chen, W. Li, F. Li, B.T. Liu, X.Y. Zhang, Nanotechnology 19, 225601–225608 (2008)

    Article  ADS  Google Scholar 

  14. P.C. Wu, Y. Dai, Y. Ye, X.L. Fang, T. Sun, C. Liu, L. Dai, J. Mater. Chem. 20, 4404–4408 (2010)

    Article  Google Scholar 

  15. A. Ghezelbash, B. Koo, B.A. Korgel, Nano. Lett. 6, 1832–1836 (2006)

    Article  ADS  Google Scholar 

  16. N.M.A. Hadia, S. García-Granda, J.R. García, J. Nanosci. Nanotechnol. 14, 5449–5454 (2014)

    Article  Google Scholar 

  17. S.H. Yu, Y.S. Wu, J. Yang, Z.H. Han, X. Xie, Y.T. Qian, X.M. Lin, Chem. Mater. 10, 2309–2312 (1998)

    Article  Google Scholar 

  18. Y.W. Jun, S.M. Lee, N.J. Kang, J. Cheon, J. Am. Chem. Soc. 123, 5150–5151 (2001)

    Article  Google Scholar 

  19. D. Routkevitch, T.L. Hastett, L. Ryan, T. Bigioni, C. Douketis, M. Moskovits, Chem. Phys. 210, 343–352 (1996)

    Article  ADS  Google Scholar 

  20. Y.W. Wang, G.W. Meng, L.D. Zhang, C.H. Liang, J. Zhang, Chem. Mater. 14, 1773–1777 (2002)

    Article  Google Scholar 

  21. Y.J. Xiong, Y. Xie, J. Yang, R. Zhang, C.Z. Wu, G. Du, J. Mater. Chem. 12, 371237–371216 (2002)

    Article  Google Scholar 

  22. Z.W. Pan, Z.R. Dai, Z.L. Wang, Science 291, 1947–1949 (2001)

    Article  ADS  Google Scholar 

  23. S.H. Mohamed, I.B.I. Tomsah, M. El-Hagary, Optoelectron. Adv. Mater. Rapid Commun. 7, 485–489 (2013)

    Google Scholar 

  24. Y.K. Liu, X.P. Zhou, D.D. Hou, H. Wu, J. Mater. Sci. 41, 6492–6492 (2006)

    Article  ADS  Google Scholar 

  25. D. Pan, Q. Wang, J. Pang, S. Jiang, X. Ji, L. An, Chem. Mater. 18, 4253–4258 (2006)

    Article  Google Scholar 

  26. M. Cirillo, T. Aubert, R. Gomes, R.V. Deun, P. Emplit, A. Biermann, H. Lange, C. Thomsen, E. Brainis, Z. Hens, Chem. Mater. 26, 1154–1160 (2014)

    Article  Google Scholar 

  27. P.M.P. Salomé, J. Keller, T. Törndahl, J.P. Teixeira, N. Nicoara, R. Ribeiro Andrade, D.G. Stroppa, J.C. González, M. Edoff, J.P. Leitão, S. Sadewasser, Sol. Energ. Mat. Sol. C 159, 272–281 (2017)

    Article  Google Scholar 

  28. A. Abdel-Galil, H.E. Ali, M.R. Balboul, Optik 129, 153–162 (2017)

    Article  ADS  Google Scholar 

  29. R.S. Darianin, Z. Emami, Ceram. Int. 41, 8820–8827 (2015)

    Article  Google Scholar 

  30. S.M. Liu, F.Q. Liu, H.Q. Guo, Z.H. Zhang, Z.G. Wang, Solid State Commun. 115, 615–618 (2000)

    Article  ADS  Google Scholar 

  31. Z.R. Dai, Z.W. Pan, Z.L. Wang, Adv. Funct. Matter. 13, 9–24 (2003)

    Article  Google Scholar 

  32. M.A. Islam, F. Haque, K.S. Rahman, N. Dhar, M.S. Hossain, Y. Sulaiman, N. Amin, Optik 126, 3177–3180 (2015)

    Article  ADS  Google Scholar 

  33. Z.R. Khan, M. Zulfequar, M.S. Khan, Mater. Sci. Eng. B 174, 145–149 (2010)

    Article  Google Scholar 

  34. L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, R. Jayavel, Nanomater. Nanotechnol. 1, 42–48 (2011)

    Article  Google Scholar 

  35. R. Swanepoel, J. Phys. E 16, 1214–1222 (1983)

    Article  ADS  Google Scholar 

  36. C. Baban, G.G. Rusu, I.I. Nicolaescu, G.I. Rusu, J. Phys. Condens. Matter. 12, 7687–7697 (2000)

    Article  ADS  Google Scholar 

  37. A.L. Cauchy, Bull. Sci. Math. 14, 6–10 (1830)

    Google Scholar 

  38. J.C. Manifacier, J. Gasiot, J.P. Fillard, J. Phys. E Sci. Instrum 9, 1002–1004 (1976)

    Article  ADS  Google Scholar 

  39. A. Qurashi, E.M. El-Maghraby, T. Yamazaki, T. Kikuta, Sens. Actuators B 147, 48–54 (2010)

    Article  Google Scholar 

  40. S. Mathew, P.S. Mukerjee, K.P. Vijayakumar, Thin Solid Films 254, 278–284 (1995)

    Article  ADS  Google Scholar 

  41. U. Pal, R. Silva-Gonzalez, G. Martinez-Montes, M. Gracia-Jimenez, M.A. Vidal, S.H. Torres, Thin Solid Films 305, 345–350 (1997)

    Article  ADS  Google Scholar 

  42. F. Urbach, Phys. Rev. 92, 1324–1324 (1953)

    Article  ADS  Google Scholar 

  43. A.A. Ziabari, F.E. Ghodsi, Sol. Energy MaterSol. Cells 105, 249–262 (2012)

    Article  Google Scholar 

  44. N.F. Mott, E.A. Davis, Electronic Process in non-Crystalline Materials (Calen-dron Press, Oxford, 1979)

    Google Scholar 

  45. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z.H. Zhang, J. Li, Y. Liu, J. Alloys Comp. 493, 305–308 (2010)

    Article  Google Scholar 

  46. T.S. Moss, Optical Properties of Semiconductors (Academic Press, New York, 1974)

    Google Scholar 

  47. A. Kariper, E. Güneri, F. Göde, C. Gümüş, T. Özpozan, Mater. Chem. Phys. 129, 183–188 (2011)

    Article  Google Scholar 

  48. S.H. Mohamed, A.M. Abd El-Rahman, A.M. Salemb, L. Pichon, F.M. El-Hossary, J. Phys. Chem. Solids 67, 2351–2357 (2006)

    Article  ADS  Google Scholar 

  49. A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, J. Alloys Comp. 557, 53–59 (2013)

    Article  Google Scholar 

  50. J. Chu, Z. Jin, W. Wanga, H. Liu, D. Wang, J. Yang, Z. Hong, J. Alloys Comp. 517, 54–60 (2012)

    Article  Google Scholar 

  51. S. Celebi, A.K. Erdamar, A. Sennaroglu, A. kurt, H.Y. Acar, J. Phys. Chem. 111, 12668–12675 (2007)

    Article  Google Scholar 

  52. K. Sivaramamoorthy, S.A. Bahadur, M. Kottaisamy, K.R. Murali, J. Alloys Compd. 503, 170–176 (2010)

    Article  Google Scholar 

  53. R.N. Ahmad-Bitar, Renew Energy 19, 579–586 (2000)

    Article  Google Scholar 

  54. G.K.P. Ramanandan, G. Ramakrishnan, P.C.M. Planken, J. Appl. Phys. 111, 123517–123516 (2012)

    Article  ADS  Google Scholar 

  55. A.S. Khomane, J. Alloy. Compd 496, 508–511 (2010)

    Article  Google Scholar 

  56. C.D.G. Lazos, E. Rosendo, M. Ortega, A.I. Oliva, O. Tapia, T. Díaz, H. Juárez, G. García, M. Rubín, Mater. Sci. Eng. B 65, 74–76 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. A. Hadia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alqahtani, M.S., Hadia, N.M.A. & Mohamed, S.H. Synthesis, optical, structural, and electrical properties of single-crystalline CdS nanobelts. Appl. Phys. A 123, 298 (2017). https://doi.org/10.1007/s00339-017-0923-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0923-4

Keywords

Navigation