Skip to main content
Log in

Nanothermometry using optically trapped erbium oxide nanoparticle

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new optical probe technique using a laser-trapped erbium oxide nanoparticle (size ~150 nm) is introduced that can measure absolute temperature with a spatial resolution on the size of the trapped nanoparticle. This technique (scanning optical probe thermometry) is used to collect a thermal image of a gold nanodot prepared with hole-mask colloidal lithography. A convolution analysis of the thermal profile shows that the point spread function of our measurement is a Gaussian with a FWHM of 165 nm. We attribute the width of this function to clustering of Er2O3 nanoparticles in solution. The scanning optical probe thermometer is used to measure the temperature where vapor nucleation occurs in degassed water (555 K), confirming that a nanoscale object heated in water will superheat the surrounding water to the spinodal decomposition temperature. Subsequently, the temperature inside the vapor bubble rises to the melting point of the gold nanostructure (~1300) where a temperature plateau is observed. The rise in temperature is attributed to inhibition of thermal transfer to the surrounding liquid by the thermal insulating vapor cocoon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.D. Losego, D.G. Cahill, Nat. Mater. 12(5), 382 (2013)

    Article  ADS  Google Scholar 

  2. M.D. Losego, M.E. Grady, N.R. Sottos, D.G. Cahill, P.V. Braun, Nat. Mater. 11(6), 502 (2012)

    Article  ADS  Google Scholar 

  3. W.-L. Ong, S.M. Rupich, D.V. Talapin, A.J.H. McGaughey, J.A. Malen, Nat. Mater. 12(5), 410 (2013)

    Article  ADS  Google Scholar 

  4. R.L. Aggarwal, L.W. Farrar, S.K. Saikin, J. Phys. Chem. C 116(31), 16656 (2012)

    Article  Google Scholar 

  5. G. Baffou, R. Quidant, Laser Photonics Rev. 7(2), 171 (2013)

    Article  Google Scholar 

  6. X. Chen, Y.T. Chen, M. Yan, M. Qiu, ACS Nano 6(3), 2550 (2012)

    Article  Google Scholar 

  7. J. Croissant, J.I. Zink, J. Am. Chem. Soc. 134(18), 7628 (2012)

    Article  Google Scholar 

  8. C. Fang, L. Shao, Y. Zhao, J. Wang, H. Wu, Adv. Mater. 24(1), 94 (2012)

    Article  Google Scholar 

  9. E.C. Garnett, W. Cai, J.J. Cha, F. Mahmood, S.T. Connor, M.G. Christoforo, Y. Cui, M.D. McGehee, M.L. Brongersma, Nat. Mater. 11(3), 241 (2012)

    Article  ADS  Google Scholar 

  10. W. Ni, H. Ba, A.A. Lutich, F. Jaeckel, J. Feldmann, Nano Lett. 12(9), 4647 (2012)

    Article  ADS  Google Scholar 

  11. Y. Xiong, R. Long, D. Liu, X. Zhong, C. Wang, Z.-Y. Li, Y. Xie, Nanoscale 4(15), 4416 (2012)

    Article  ADS  Google Scholar 

  12. A.U. Zillohu, R. Abdelaziz, M.K. Hedayati, T. Emmler, S. Homaeigohar, M. Elbahri, J. Phys. Chem. C 116(32), 17204 (2012)

    Article  Google Scholar 

  13. C. Vazquez-Vazquez, B. Vaz, V. Giannini, M. Perez-Lorenzo, R.A. Alvarez-Puebla, M.A. Correa-Duarte, J. Am. Chem. Soc. 135(37), 13616 (2013)

    Article  Google Scholar 

  14. X. Chong, N. Jiang, Z. Zhang, S. Roy, J.R. Gord, J. Nanopart. Res. 15(6), 1678 (2013)

    Article  Google Scholar 

  15. Z. Fang, Y.-R. Zhen, O. Neumann, A. Polman, F. Javier Garcia de Abajo, P. Nordlander, N.J. Halas, Nano Lett. 13(4), 1736 (2013)

    Article  ADS  Google Scholar 

  16. K.M. Haas, B.J. Lear, Nanoscale 5(12), 5247 (2013)

    Article  ADS  Google Scholar 

  17. F. Wang, C. Li, H. Chen, R. Jiang, L.-D. Sun, Q. Li, J. Wang, J.C. Yu, C.-H. Yan, J. Am. Chem. Soc. 135(15), 5588 (2013)

    Article  Google Scholar 

  18. H. Han, J.Y. Lee, X. Lu, Chem. Commun. 49(55), 6122 (2013)

    Article  Google Scholar 

  19. M. Fedoruk, M. Meixner, S. Carretero-Palacios, T. Lohmueller, J. Feldmann, ACS Nano 7(9), 7648 (2013)

    Article  Google Scholar 

  20. J. Qiu, Y.-C. Wu, Y.-C. Wang, M.H. Engelhard, L. McElwee-White, W.D. Wei, J. Am. Chem. Soc. 135(1), 38 (2013)

    Article  Google Scholar 

  21. R. Huschka, J. Zuloaga, M.W. Knight, L.V. Brown, P. Nordlander, N.J. Halas, J. Am. Chem. Soc. 133(31), 12247 (2011)

    Article  Google Scholar 

  22. I. Alessandri, M. Ferroni, L.E. Depero, J. Phys. Chem. C 115(12), 5174 (2011)

    Article  Google Scholar 

  23. C. Fasciani, C.J. Bueno Alejo, M. Grenier, J.C. Netto-Ferreira, J.C. Scaiano, Org. Lett. 13(2), 204 (2011)

    Article  Google Scholar 

  24. X. Huang, S. Tang, X. Mu, Y. Dai, G. Chen, Z. Zhou, F. Ruan, Z. Yang, N. Zheng, Nat. Nanotechnol. 6(1), 28 (2011)

    Article  ADS  Google Scholar 

  25. Y. Tsuboi, R. Shimizu, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, J. Photochem. Photobiol. A Chem. 221(2–3), 250 (2011)

    Article  Google Scholar 

  26. J.M. Walker, L. Gou, S. Bhattacharyya, S.E. Lindahl, J.M. Zaleski, Chem. Mater. 23(23), 5275 (2011)

    Article  Google Scholar 

  27. A.G. Skirtach, A.M. Javier, O. Kreft, K. Kohler, A.P. Alberola, H. Mohwald, W.J. Parak, G.B. Sukhorukov, Angew. Chem. Int. Edit. 45(28), 4612 (2006)

    Article  Google Scholar 

  28. J. Stehr, C. Hrelescu, R.A. Sperling, G. Raschke, M. Wunderlich, A. Nichtl, D. Heindl, K. Kurzinger, W.J. Parak, T.A. Klar, J. Feldmann, Nano Lett. 8(2), 619 (2008)

    Article  ADS  Google Scholar 

  29. L.R. Hirsch, R.J. Stafford, J.A. Bankson, S.R. Sershen, B. Rivera, R.E. Price, J.D. Hazle, N.J. Halas, J.L. West, Proc. Natl. Acad. Sci. U.S.A. 100(23), 13549 (2003)

    Article  ADS  Google Scholar 

  30. A.S. Urban, M. Fedoruk, M.R. Horton, J. Radler, F.D. Stefani, J. Feldmann, Nano Lett. 9(8), 2903 (2009)

    Article  ADS  Google Scholar 

  31. X.H. Huang, P.K. Jain, I.H. El-Sayed, M.A. El-Sayed, Lasers Med. Sci. 23(3), 217 (2008)

    Article  Google Scholar 

  32. E.B. Dickerson, E.C. Dreaden, X.H. Huang, I.H. El-Sayed, H.H. Chu, S. Pushpanketh, J.F. McDonald, M.A. El-Sayed, Cancer Lett. 269(1), 57 (2008)

    Article  Google Scholar 

  33. I.H. El-Sayed, X.H. Huang, M.A. El-Sayed, Cancer Lett. 239(1), 129 (2006)

    Article  Google Scholar 

  34. P.K. Jain, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128(7), 2426 (2006)

    Article  Google Scholar 

  35. D. Boyer, P. Tamarat, A. Maali, B. Lounis, M. Orrit, Science 297(5584), 1160 (2002)

    Article  ADS  Google Scholar 

  36. L. Cognet, C. Tardin, D. Boyer, D. Choquet, P. Tamarat, B. Lounis, Proc. Natl. Acad. Sci. U.S.A. 100(20), 11350 (2003)

    Article  ADS  Google Scholar 

  37. S. Berciaud, L. Cognet, G.A. Blab, B. Lounis, Phys. Rev. Lett. 93(25), 257402 (2004)

    Article  ADS  Google Scholar 

  38. A. Gaiduk, M. Yorulmaz, P.V. Ruijgrok, M. Orrit, Science 330(6002), 353 (2010)

    Article  ADS  Google Scholar 

  39. G. Baffou, M.P. Kreuzer, F. Kulzer, R. Quidant, Opt. Express 17(5), 3291 (2009)

    Article  ADS  Google Scholar 

  40. G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, S. Monneret, ACS Nano 6(3), 2452 (2012)

    Article  Google Scholar 

  41. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, J.-J. Greffet, Nature 444(7120), 740 (2006)

    Article  ADS  Google Scholar 

  42. M.T. Carlson, A. Khan, H.H. Richardson, Nano Lett. 11(3), 1061 (2011)

    Article  ADS  Google Scholar 

  43. H.M. Pollock, A. Hammiche, J. Phys. D-Appl. Phys. 34(9), R23 (2001)

    Article  ADS  Google Scholar 

  44. S. Sadat, A. Tan, Y.J. Chua, P. Reddy, Nano Lett. 10(7), 2613 (2010)

    Article  ADS  Google Scholar 

  45. P. Loew, B. Kim, N. Takama, C. Bergaud, Small 4(7), 908 (2008)

    Article  Google Scholar 

  46. F. Vetrone, R. Naccache, A. Zamarron, A. Juarranz de la Fuente, F. Sanz-Rodriguez, L. Martinez Maestro, E. Martin Rodriguez, D. Jaque, J. Garcia Sole, J.A. Capobianco, ACS Nano 4(6), 3254 (2010)

    Article  Google Scholar 

  47. S. Li, K. Zhang, J.M. Yang, L.W. Lin, H. Yang, Nano Lett. 7(10), 3102 (2007)

    Article  ADS  Google Scholar 

  48. B. Van de Broek, D. Grandjean, J. Trekker, J. Ye, K. Verstreken, G. Maes, G. Borghs, S. Nikitenko, L. Lagae, C. Bartic, K. Temst, M.J. Van Bael, Small 7(17), 2498 (2011)

    Google Scholar 

  49. K. Setoura, D. Werner, S. Hashimoto, J. Phys. Chem. C 116(29), 15458 (2012)

    Article  Google Scholar 

  50. P.M. Bendix, S. Nader, S. Reihani, L.B. Oddershede, ACS Nano 4(4), 2256 (2010)

    Article  Google Scholar 

  51. J. Lee, A.O. Govorov, N.A. Kotov, Angew. Chem. Int. Edit. 44(45), 7439 (2005)

    Article  Google Scholar 

  52. A.O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, N.A. Kotov, Nanoscale Res. Lett. 1(1), 84 (2006)

    Article  ADS  Google Scholar 

  53. M.J. Garter, A.J. Steckl, IEEE Trans. Elect. Dev. 49(1), 48 (2002)

    Article  ADS  Google Scholar 

  54. M.L. Debasu, D. Ananias, I. Pastoriza-Santos, L.M. Liz-Marzan, J. Rocha, L.D. Carlos, Adv. Mater. 25(35), 4868 (2013)

    Article  Google Scholar 

  55. K. Sasikumar, P. Keblinski, J. Chem. Phys. 141(23), 234508 (2014)

    Article  ADS  Google Scholar 

  56. M.T. Carlson, A.J. Green, H.H. Richardson, Nano Lett. 12(3), 1534 (2012)

    Article  ADS  Google Scholar 

  57. S. Baral, A.J. Green, M.Y. Livshits, A.O. Govorov, H.H. Richardson, ACS Nano 8(2), 1439 (2014)

    Article  Google Scholar 

  58. A.O. Govorov, H.H. Richardson, Nano Today 2(1), 30 (2007)

    Article  Google Scholar 

  59. V. Kotaidis, A. Plech, Appl. Phys. Lett. 87(21), 213102 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors thank Martin Kordesch and Jixin Chen for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugh H. Richardson.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1426 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baral, S., Johnson, S.C., Alaulamie, A.A. et al. Nanothermometry using optically trapped erbium oxide nanoparticle. Appl. Phys. A 122, 340 (2016). https://doi.org/10.1007/s00339-016-9886-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9886-0

Keywords

Navigation