Skip to main content
Log in

Corrosion resistance behavior of nitrogen ion-implanted in tantalum

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper investigates the effect of nitrogen ion implantation on surface structure as well as resistance against tantalum corrosion. In this experiment, nitrogen ions which had energy of 30 keV and were in doses of 1 × 1017 to 9 × 1017 ions/cm2 were used. The X-ray diffraction analysis was applied for both the metallic analysis and the study of new structures having been created through the nitrogen ion implantation. Atomic force microscopy was also used to check the roughness variations prior to and also after the implantation phase. Moreover, the corrosion analysis apparatus was applied in order to compare resistance against tantalum corrosion in advance to and after the ion implantation. The results indicate that nitrogen ion implantation has a significant impact on increasing resistance against tantalum corrosion. After the corrosion test, the surface morphology of samples was analyzed by scanning electron microscopy. Also, the elemental composition is characterized by energy-dispersive X-ray (EDX) analysis. The purpose of this article is to obtain the perfect condition of the formation of tantalum corrosion resistance. The corrosion potential curves and roughness values obviously indicate that corrosion potential variations caused by the different doses of nitrogen ion bombardment are proportional to surface roughness in an inverse manner. The EDX analysis demonstrates the existence of the elemental composition of nitrogen ion implantation in the samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.Y. Chen, Y.X. Leng, X.B. Tian, L.P. Wang, N. Huang, P.K. Chu, P. Yang, Biomaterials 23, 2545 (2002)

    Article  Google Scholar 

  2. Y. Cheng, C. Wei, K.Y. Gan, L.C. Zhao, Surf. Coat. Technol. 176, 261 (2004)

    Article  Google Scholar 

  3. K.G. Stephens, I.H. Wilson, Thin Solid Films 50, 325 (1978)

    Article  ADS  Google Scholar 

  4. I.M. Bellil, F.F. Komarov, V.S. Tischcov, V.M. Yankovskii, PIzy.v Stat. Solid A 45, 343 (1978)

    Article  ADS  Google Scholar 

  5. N. Terao, Japan, J. Appl. Phys. 10, 248 (1971)

  6. G. Dearnaley, Nucl. Instrum. Methods B 80, 358 (1990)

    Article  ADS  Google Scholar 

  7. V.I. Lavrentiev, A.D. Pogrebnjak, Surf. Coat. Technol. 99, 24 (1998)

    Article  Google Scholar 

  8. H.K. Sanghera, J.L. Sullivan, S.O. Saied, Appl. Surf. Sci. 141, 57 (1999)

    Article  ADS  Google Scholar 

  9. M. Ghoranneviss, A.H. Sari, M. Esmaeelpour, M.R. Hantehzadeh, H. Savalouni, Appl. Surf. Sci. 237, 326–331 (2004)

    Article  ADS  Google Scholar 

  10. A. Shokouhy, M.M. Larijani, M. Ghoranneviss, S.H. Haji Hosseini, G.M. Yari, A.H. Sari, M. Gholipur Shahraki, Appl. Surf. Sci. 237, 326–331 (2004)

    Article  Google Scholar 

  11. M. Ghoranneviss, A. Shokouhy, M.M. Larijani, S.H. Haji Hosseini, M. Yari, A. Anvari, M. Gholipur Shahraki, M.R. Hantehzadeh, Pramana J. Phys. 68(1), 135 (2007)

    Article  ADS  Google Scholar 

  12. F.M. Kustas, W.T. Misr, W.T. Tack, Mater. Sci. Eng. 90, 407 (1987)

    Article  Google Scholar 

  13. Y. Sugizaki, T. Yasunaga, H. Tomari, Surf. Coat. Technol. 83, 167 (1996)

    Article  Google Scholar 

  14. B.Y. Tang, K.Y. Gan, P. Yang, X.F. Wang, L.P. Wang, S.Y. Wang, P.K. Chu, Thin Solid Films 402, 211 (2002)

    Article  ADS  Google Scholar 

  15. L.R. Shen, K. Wang, J. Tie, H.H. Tong, Q.C. Chen, D.L. Tang, R.K.Y. Fu, P.K. Chu, Surf. Coat. Technol. 196, 349 (2005)

    Article  Google Scholar 

  16. A. Kollitsch, F. Hontscol, Vaccum 44, 291 (1993)

    Article  Google Scholar 

  17. V.G. Behal, A.S. Melilli, American Society for TesTaNg and Materials. Committee A-1 on steel, stainless steel, and relatedalloys (1982)

  18. A.K. De, J.G. Speer, D.K. Matlock, D.C. Murdock, M.C. Mataya, R.J. Comstock, Metall. Mater. Trans. A 37, 1875 (2006)

    Article  Google Scholar 

  19. Z.W. Kowalski, J. Wilk, J. Martan, Vacuum 83, 208 (2009)

    Article  ADS  Google Scholar 

  20. V.A. Belus, G.I. Nosov, in IEEE Proceedings of the 18th International Symposium on Discharges and Electrical Insulation in Vacuum, Eindhoven, 634(1998)

  21. M.A. Vasylyev, V.E. Panarin, A.A. Deina, B.B. Stramal, F.O. Muktepavela, Czechoslov. J. Phys. 50, 457 (2000)

    Article  ADS  Google Scholar 

  22. J.J. Townsend, Contempl. Phys. 27, 241 (1987)

    Article  ADS  Google Scholar 

  23. S.S. Patila, R.P. Fernandesa, N.K. Patela, P.A. Rayjadab, P.M. Raoleb, D.C. Kotharia, Surf. Coat. Technol. 196, 284 (2005)

    Article  Google Scholar 

  24. M.G. Fontana, N.D. Greene, Corrosion Engineering, ch. 2, 9, 10 (McGraw-Hill, New York, 1978)

    Google Scholar 

  25. K. Holloway, M. Fryer Peter, C. Cabral Jr, J.M.E. Harper, P.J. Bailey, K.H. Kelleher, J. Appl. Phys. 71, 5433 (1992)

    Article  ADS  Google Scholar 

  26. K.H. Min, K.C. Chun, K.B. Kim, J. Vac. Sci. Technol. B 14, 3263 (1996)

    Article  Google Scholar 

  27. A.E. Kaloyeros, E. Eisenbraun, Annu. Rev. Mater. Sci. 30, 363 (2000)

    Article  ADS  Google Scholar 

  28. T. Riekkinena, J. Molariusa, T. Laurilab, A. Nurmelaa, I. Sunia, J.K. Kivilahtib, Microelectron. Eng. 64, 289 (2002)

    Article  Google Scholar 

  29. Y.X. Leng, H. Sun, P. Yang, J.Y. Chen, J. Wang, G.J. Wan, N. Huang, X.B. Tian, L.P. Wang, P.K. Chu, Thin Solid Films 398, 471 (2001)

    Article  ADS  Google Scholar 

  30. R. Saha, J.A. Barnard, J. Cryst. Growth 174, 495 (1997)

    Article  ADS  Google Scholar 

  31. M. Habibi, S. Javadi, M. Ghoranneviss, J. Surf. Coat. Technol 254, 112 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

Special thanks to Maryam Habibi for helping to analysis data and consultation, Dr. A.H. Sari for the helpful discussions and A. Shokouhy for the implantation processes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Ghoranneviss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramezani, A.H., Hantehezadeh, M.R., Ghoranneviss, M. et al. Corrosion resistance behavior of nitrogen ion-implanted in tantalum. Appl. Phys. A 122, 179 (2016). https://doi.org/10.1007/s00339-016-9712-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9712-8

Keywords

Navigation