Skip to main content
Log in

Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Space-selective nanostructuring inside various III–V semiconductor materials containing gallium element has been accomplished by focused irradiation of IR femtosecond laser pulses. To elucidate the formation mechanisms of periodic nanostructures, we systematically classified III–V semiconductor materials in which polarization-dependent periodic nanostructure can be formed. Self-organization of the periodic nanostructures could be induced empirically only if it is indirect bandgap semiconductor, namely GaP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.M. Davis, K. Miura, N. Sugimoto, K. Hirao, Opt. Lett. 21, 1729 (1996)

    Article  ADS  Google Scholar 

  2. Y. Shimotsuma, M. Sakakura, P.G. Kazansky, M. Beresna, J. Qiu, K. Miura, K. Hirao, Adv. Mater. 22, 4039 (2010)

    Article  Google Scholar 

  3. Y. Shimotsuma, P.G. Kazansky, J. Qiu, K. Hirao, Phys. Rev. Lett. 91, 247405 (2003)

    Article  ADS  Google Scholar 

  4. V.R. Bhardwaj, E. Simova, P.P. Rajeev, C. Hnatovsky, R.S. Taylor, D.M. Rayner, P.B. Corkum, Phys. Rev. Lett. 96, 057404 (2006)

    Article  ADS  Google Scholar 

  5. M. Lancry, N. Groothoff, B. Poumellec, S. Guizard, N. Fedorov, J. Canning, Phys. Rev. B 84, 245103 (2011)

    Article  ADS  Google Scholar 

  6. M. Mori, Y. Shimotsuma, T. Sei, M. Sakakura, K. Miura, H. Udono, Phys. Status Solidi A 212, 715 (2015)

    Article  Google Scholar 

  7. T. Asai, Y. Shimotsuma, T. Kurita, A. Murata, S. Kubota, M. Sakakura, K. Miura, F. Brisset, B. Poumellec, M. Lancry, J. Am. Ceram. Soc. 5, 1471 (2015)

    Article  Google Scholar 

  8. S. Richter, M. Heinrich, S. Döring, A. Tünnermann, S. Nolte, U. Peschel, J. Laser Appl. 24, 042008 (2012)

    Article  ADS  Google Scholar 

  9. D.R. Lide, CRC Handbook of Chemistry and Physics, 80th edn. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  10. Y. Ishikawa, Y. Shimotsuma, A. Kaneta, M. Sakakura, M. Nishi, K. Miura, K. Hirao, Y. Kawakami, Proc. SPIE 8243, 82430N (2012)

    Article  ADS  Google Scholar 

  11. K. Sugioka, M. Iida, H. Takai, K. Micorikawa, Opt. Lett. 36, 2734 (2011)

    Article  ADS  Google Scholar 

  12. A.F. Wright, J. Appl. Phys. 82, 2833 (1997)

    Article  ADS  Google Scholar 

  13. T. Ueda, M. Ishida, M. Yuri, Jpn. J. Appl. Phys. 50, 041001 (2011)

    Article  ADS  Google Scholar 

  14. M.J. Weber, CRC Handbook of Laser Science and Technology: Supplement 2 (CRC Press, Boca Raton, 1995)

    Google Scholar 

  15. T. Suzuki, R. Shimano, Phys. Rev. B 83, 085207 (2011)

    Article  ADS  Google Scholar 

  16. C.A. Dimitriadis, Solid State Electron. 26, 633 (1983)

    Article  ADS  Google Scholar 

  17. M. Yousuf, S.B. Qadri, E.F. Skelton, Appl. Phys. A 76, 133 (2003)

    Article  ADS  Google Scholar 

  18. P.S. Pizani, R.G. Jasinevicius, J. Phys. Conf. Ser. 500, 182032 (2014)

    Article  ADS  Google Scholar 

  19. B.C. Stuart, M.D. Feit, S. Herman, A.M. Rubenchik, B.W. Shore, M.D. Perry, Phys. Rev. B 53, 1749 (1996)

    Article  ADS  Google Scholar 

  20. L. Sudrie, A. Couairon, M. Franco, B. Lamouroux, B. Prade, S. Tzortzakis, A. Mysyrowicz, Phys. Rev. Lett. 89, 186601 (2002)

    Article  ADS  Google Scholar 

  21. J. Noack, A. Vogel, IEEE J. Quantum Electron. 35, 1156 (1999)

    Article  ADS  Google Scholar 

  22. A.Q. Wu, IhteshamH Chowdhury, X. Xu, Phys. Rev. B 72, 085128 (2005)

    Article  ADS  Google Scholar 

  23. R. Boyd, Nonlinear Optics, 3rd edn. (Academic Press, New York, 2009)

    Google Scholar 

  24. P.T. Rakich, P. Davids, Z. Wang, Opt. Express 18, 14439 (2010)

    Article  ADS  Google Scholar 

  25. G. Bahl, M. Tomes, F. Marquardt, T. Carmon, Nat. Phys. 8, 203 (2012)

    Article  Google Scholar 

  26. W. Pötz, P. Kocevar, Phys. Rev. B 28, 7040 (1983)

    Article  ADS  Google Scholar 

  27. S.E. Kumekov, V.I. Perel’, J. Exp. Theor. Phys. 67, 193 (1988)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by JSPS KAKENHI, The Thermal & Electric Energy Technology Foundation, Tokuyama Science Foundation, Cross-Ministerial Strategic Innovation Promotion (SIP) Program and Industry-Academia Collaborative R&D Programs (Super Cluster Program), NIMS microstructural characterization platform as a program of Nanotechnology Platform of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shimotsuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimotsuma, Y., Sei, T., Mori, M. et al. Self-organization of polarization-dependent periodic nanostructures embedded in III–V semiconductor materials. Appl. Phys. A 122, 159 (2016). https://doi.org/10.1007/s00339-016-9686-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9686-6

Keywords

Navigation