Skip to main content
Log in

Preparation of graphene foam with high performance by modified self-assembly method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, self-assembly method was applied for preparation of graphene foam. However, it is still a great challenge to obtain a three-dimensional graphene network with high performance (e.g., low density, high mechanical strength and high conductivity together) for the self-assembly method. Herein, a modified self-assembly method applied for preparation of graphene foam was investigated, in which, L-ascorbic acid and HI were firstly chosen as the reducing agent, and further reduced by hydrazine hydrate. The results demonstrated that the graphene foam showed high compressive strength (ca. 320 kPa), high electrical conductivity (20.6 S/m) and low density (14.7 mg/cm−1). Especially, the obtained compressive strength (ca. 320 kPa) is the highest value compared to the data of graphene foam reported in previous works. This phenomenon may be due to following three reasons: (1) the reaction between hydrazine hydrate and graphene brought some covalent bonds among graphene sheets; (2) graphene foam was achieved by high hydrophobicity and electrostatic repulsion which inhibit the restacking of graphene sheets; (3) the removal of the oxygen groups by hydrazine hydrate efficiently restores conjugation of sp2 regions and the π–π interaction in the cross-linking sites, which tightly bonds the sheets together. The obtained graphene foam not only had good porous structure and mechanical strength, but also showed excellent satisfactory double-layer capacitive behavior with good electrochemical cyclic stability and high specific capacitance of 171.0 F/g for application in electrode of supercapacitors and absorption capacities for the removal of various oils and dyes from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z.H. Tang, S.L. Shen, J. Zhuang, X. Wang, Angew. Chem. Int. Ed. 49, 4603 (2010)

    Article  Google Scholar 

  2. Z.S. Wu, S.B. Yang, Y. Sun, K. Parvez, X.L. Feng, K. Mullen, J. Am. Chem. Soc. 134, 9082 (2012)

    Article  Google Scholar 

  3. L. Estevez, A. Kelarakis, Q.M. Gong, E.H. Da’as, E.P. Giannelis, J. Am. Chem. Soc. 133, 6122 (2011)

    Article  Google Scholar 

  4. Y.X. Xu, K.X. Sheng, C. Li, G.Q. Shi, ACS Nano 4, 4324 (2010)

    Article  Google Scholar 

  5. X.T. Zhang, Z.Y. Sui, B. Xu, S.F. Yue, Y.J. Luo, W.C. Zhan, B. Liu, J. Mater. Chem. 21, 6494 (2011)

    Article  Google Scholar 

  6. H.P. Cong, X.C. Ren, P. Wang, S.H. Yu, ACS Nano 6, 2693 (2012)

    Article  Google Scholar 

  7. X. Jiang, Y.W. Ma, J.J. Li, Q.L. Fan, W. Huang, J. Phys. Chem. C 114, 22462 (2010)

    Article  Google Scholar 

  8. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Nat. Mater. 10, 424 (2011)

    Article  ADS  Google Scholar 

  9. X.H. Cao, Y.M. Shi, W.H. Shi, G. Lu, X. Huang, Q.Y. Yan, Q.C. Zhang, H. Zhang, Small 7, 3163 (2011)

    Article  Google Scholar 

  10. X.C. Dong, H. Xu, X.W. Wang, Y.X. Huang, M.B. Chan-Park, H. Zhang, L.H. Wang, W. Huang, P. Chen, ACS Nano 4, 3206 (2012)

    Article  Google Scholar 

  11. X.C. Dong, X.W. Wang, L.H. Wang, H. Song, H. Zhang, W. Huang, P. Chen, A.C.S. Appl, Mater. Interfaces 4, 3129 (2012)

    Article  Google Scholar 

  12. W.F. Chen, L.F. Yan, Nanoscale 3, 3132 (2011)

    Article  ADS  Google Scholar 

  13. L.B. Zhang, G.Y. Chen, M. NejibHedhili, H.N. Zhang, P. Wang, Nanoscale 4, 7038 (2012)

    Article  ADS  Google Scholar 

  14. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466 (2010)

    Article  Google Scholar 

  15. X.Z. Wu, J. Zhou, W. Xing et al., J. Mater. Chem. 22, 23186 (2012)

    Article  Google Scholar 

  16. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  17. X. Zhang, Z. Sui, B. Xu, S. Yue, Y. Luo, W. Zhan, B. Liu, J. Mater. Chem. 21, 6494 (2011)

    Article  Google Scholar 

  18. Z. Sui, X. Zhang, Y. Lei, Y. Luo, Carbon 49, 4314 (2011)

    Article  Google Scholar 

  19. J.H. Li, J.Y. Li, H. Meng, J. Mater. Chem. A 2, 2934 (2014)

    Article  Google Scholar 

  20. H. Hu, Z.B. Zhao, W.B. Wan, Y. Gogotsi, J.S. Qiu, Adv. Mater. 25, 2219 (2013)

    Article  Google Scholar 

  21. T. Wu, M.X. Chen, L. Zhang, X.Y. Xu, Y. Liu, J. Yan, W. Wang, J.P. Gao, J. Mater. Chem. A 1, 7612 (2013)

    Article  Google Scholar 

  22. P. Lian, X. Zhu, S. Liang, Z. Li, W. Yang, H. Wang, Electrochim. Acta 55, 3909 (2010)

    Article  Google Scholar 

  23. Z. Han, Z.H. Tang, P. Li, G.Z. Yang, Q.B. Zheng, J.H. Yang, Nanoscale 5, 5462 (2013)

    Article  ADS  Google Scholar 

  24. H.Y. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554 (2013)

    Article  Google Scholar 

  25. S.T. Nguyena, H.T. Nguyen, A. Rinaldi, N.P.V. Nguyena, Z. Fan, H.M. Duong, Colloids and surfaces a: physicochem. Eng. Aspects 414, 352 (2012)

    Article  Google Scholar 

  26. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Physical review letter 97, 187401 (2006)

    Article  ADS  Google Scholar 

  27. Y.Y. Sun, W.H. Zhang, D.S. Li, L. Gao, C.L. Hou, Y.H. Zhang, Y.Q. Liu, J. Alloys Compd. 649, 579 (2015)

    Article  Google Scholar 

  28. T.T. Liu, G.Z. Zhao, W.H. Zhang, H.J. Chi, C.L. Hou, Y.Y. Sun, J. Porous Mater. 22, 1573 (2015)

    Article  Google Scholar 

  29. J. Zhang, H. Yang, G. Shen, P. Cheng, S. Guo, Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 46, 1112 (2010)

    Article  Google Scholar 

  30. S.F. Pei, J.P. Zhao, J.H. Du, W.C. Ren, H.M. Cheng, Carbon 48, 4466 (2010)

    Article  Google Scholar 

  31. I.K. Moon, J.H. Lee, R.S. Ruoff, H.Y. Lee, Nat. Commun. 1, 73 (2010)

    Article  ADS  Google Scholar 

  32. H. Wang, D.S. Zhang, T.T. Yan, X.R. Wen, J.P. Zhang, L.Y. Shi, Q.D. Zhong, J. Mater. Chem. A 1, 11778–11789 (2013)

    Article  Google Scholar 

  33. H.W. Liang, Q.F. Guan, L.F. Chen, Z. Zhu, W.J. Zhang, S.H. Yu, Angew. Chem. Int. Ed. 124, 5191 (2012)

    Article  Google Scholar 

  34. E.A. Vogler, Adv. Colloids Interfaces 74, 69 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support by National Natural Science Foundation of China under grants (11202006 and 11202007) and the Shanxi provincial natural science foundation of China (2014021018-6).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youyi Sun or Yaqing Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Sun, Y., Liu, T. et al. Preparation of graphene foam with high performance by modified self-assembly method. Appl. Phys. A 122, 259 (2016). https://doi.org/10.1007/s00339-016-9684-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9684-8

Keywords

Navigation