Skip to main content
Log in

CuO–MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Copper oxide (CuO) nanoparticles are of particular interest because of their interesting properties and promising applications in photocatalysis and purification of water. In this work, CuO–montmorillonite (CuO–MMT) nanocomposite was synthesized by a thermal decomposition method and characterized by diffuse reflectance spectroscopy, X-ray diffraction, Fourier transform infrared spectroscopy and transmission electron microscopy. The resultant particles were nearly spherical, and particle size in MMT was in the range of ∼3–5 nm. The powder X-ray reflection patterns indicate that MMT has a d-spacing higher (1.22 nm) than CuO–MMT nanocomposite (0.97 nm). The shrinkage probably is related to the conformation of CuO nanoparticles on the clay surface. The diffuse reflectance spectrum of CuO–MMT showed band around 340–360 nm corresponding to presence of [Cu–O–Cu] n -type clusters over the support surface. The band gaps of the resulting CuO nanoparticles and CuO–MMT nanocomposite were widened from 1.70 to 1.80 eV for an indirect allowed band gap and from 3.70 to 3.82 eV for a direct allowed inter band transition owing to the quantum size effect, respectively. The nanocomposite exhibited an enhanced and stable photoactivity for the discoloration of methylene blue (MB) aqueous solution under visible light. The result showed that MB discoloration was observed after 20 min light irradiation in the absence of H2O2. The several parameters were examined, such as the catalyst amount, pH and initial concentration of MB. The mechanism of separation of the photogenerated electrons and holes of the CuO–MMT nanocomposite was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Hui-Li, Z. Hui-Sheng, Z. Tao, X. Dong-Chang, J. Environ. Sci. 19, 1141 (2007)

    Article  Google Scholar 

  2. F. Kiriakidou, D.I. Kondarides, X.E. Verykios, Catal. Today 54, 119 (1999)

    Article  Google Scholar 

  3. M. Farbod, M. Khademalrasool, Powder Technol. 214, 344 (2011)

    Article  Google Scholar 

  4. P. Amornpitoksuk, S. Suwanboon, S. Sangkanu, A. Sukhoom, J. Wudtipan, K. Srijan, S. Kaewtaro, Powder Technol. 212, 432 (2011)

    Article  Google Scholar 

  5. A. Nezamzadeh-Ejhieh, M. Khorsandi, Iran. J. Catal. 1, 99 (2011)

    Google Scholar 

  6. T. Caputo, L. Lisi, R. Pirone, G. Russo, Appl. Catal. A 348, 42 (2008)

    Article  Google Scholar 

  7. J. Li, L. Liu, Y. Tang, H. Li, F. Du, Electrochem. Commun. 6, 940 (2004)

    Article  Google Scholar 

  8. W. Siripala, A. Ivanovskaya, T.F. Jaramillo, S.H. Baeck, E.W. McFarland, Sol. Energy Mater. Sol. Cells 77, 229 (2003)

    Article  Google Scholar 

  9. C. Karunakaran, R. Dhanalakshmi, P. Gomathisankar, Res. Chem. Intermed. 36, 361 (2010)

    Article  Google Scholar 

  10. R. Qiu, L. Song, Y. Mo, D. Zhang, E. Brewer, React. Kinet. Catal. Lett. 94, 183 (2008)

    Article  Google Scholar 

  11. Z. Zheng, B. Huang, Z. Wang, M. Guo, X. Qin, X. Zhang, P. Wang, Y. Dai, J. Phys. Chem. C 113, 14448 (2009)

    Article  Google Scholar 

  12. G.K. Mor, O.K. Varghese, R.H.T. Wilke, S. Sharma, K. Shankar, T.J. Latempa, K.S. Choi, C.A. Grimes, Nano Lett. 8, 1906 (2008)

    Article  ADS  Google Scholar 

  13. M. Vaseem, A. Umar, Y.B. Hahn, D.H. Kim, K.S. Lee, J.S. Jang, J.S. Lee, Catal. Commun. 10, 11 (2008)

    Article  Google Scholar 

  14. S.P. Meshram, P.V. Adhyapak, U.P. Mulik, D.P. Amalnerkar, Chem. Eng. J. 204–206, 158 (2012)

    Article  Google Scholar 

  15. J. Liu, J. Jin, Z. Deng, S.-Z. Huang, Z.-Y. Hu, L. Wang, C. Wang, L.-H. Chen, Y. Li, G. Van Tendeloo, B.-L. Su, Colloid Interface Sci. 384, 1 (2012)

    Article  Google Scholar 

  16. N.B. Shrigadi, A.B. Shinde, S.D. Samant, Appl. Catal. A 252, 23 (2003)

    Article  Google Scholar 

  17. C. Galindo-Gonzalez, J. de Vicente, M.M. Ramos-Tejada, M.T. Lopez-Lopez, F. Gonzalez-Caballero, J.D.G. Duran, Langmuir 21, 4410 (2005)

    Article  Google Scholar 

  18. N. Dubey, S.S. Rayalu, N.K. Labhsetwar, R.R. Naidu, R.V. Chatti, S. Devotta, Appl. Catal. A 303, 152 (2006)

    Article  Google Scholar 

  19. M. Miyauchi, A. Nakajima, T. Watanabe, K. Hashimoto, Chem. Mater. 14, 2812 (2002)

    Article  Google Scholar 

  20. M.H. Yao, Y. Tang, L. Zhang, H. Yang, J. Yan, Trans. Nonferrous Met. Soc. China 20, 1944 (2010)

    Article  Google Scholar 

  21. S. Song, J. Tu, L. Xu, X. Xu, Z. He, J. Qiu, J. Ni, J. Chen, Chemosphere 73, 1401 (2008)

    Article  Google Scholar 

  22. H. Yang, J. Yan, Z. Lu, X. Cheng, Y. Tang, J. Alloys Compd. 476, 715 (2009)

    Article  Google Scholar 

  23. D. Das, BCh. Nath, P. Phukon, S.K. Dolui, Colloids Surf. B 101, 430 (2013)

    Article  Google Scholar 

  24. R.M. Torresánchez, Colloid Surf. A 127, 135 (1997)

    Article  Google Scholar 

  25. R.M. Torres Sanchez, V. Lastiri, in: R. Trindade, R. Melamed, L. Gonzaga, S. Sobrado, J. Peres Barbosa (Eds.), in XIII International Conference on Heavy Metals in the Environment, Rio de Janeiro, 2005, CD. ISBN 85-7227-212-7

  26. M. Yang, J. He, J. Colloid Interface Sci. 355, 15 (2011)

    Article  Google Scholar 

  27. D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M.A.C. Melo, E.A.G. Pineda, Mater. Chem. Phys. 115, 110 (2009)

    Article  Google Scholar 

  28. C. Mosser, L.J. Michot, F. Villieras, M. Romeo, Clay Clay Miner. 45, 789 (1997)

    Article  ADS  Google Scholar 

  29. H. Jia, W. Hou, L. Wei, B. Xu, X. Liu, Dent. Mater. 24, 244 (2008)

    Article  Google Scholar 

  30. K.M. Parida, D. Rath, J. Colloid Interface Sci. 340, 209 (2009)

    Article  Google Scholar 

  31. A. Nezamzadeh-Ejhieh, M. Karimi-Shamsabadi, Chem. Eng. J. 228, 631 (2013)

    Article  Google Scholar 

  32. A.A. Jalil, M.A.H. Satar, S. Triwahyono, H.D. Setiabudi, N.H.N. Kamarudin, N.F. Jaafar, N. Sapawe, R. Ahamad, J. Electroanal. Chem. 701, 50 (2013)

    Article  Google Scholar 

  33. P. Wang, X. Zheng, X. Wu, X. Wei, L. Zhou, Microporous Mesoporous Mater. 149, 181 (2012)

    Article  Google Scholar 

  34. T. Abe, Y. Tachibana, T. Uematsu, M. Iwamoto, J. Chem. Soc. Chem. Commun. 16, 1617 (1995)

    Article  Google Scholar 

  35. F.P. Koffyberg, F.A. Benko, J. Appl. Phys. 53, 1173 (1982)

    Article  ADS  Google Scholar 

  36. V.C. Farmer, J.D. Russell, Spectrochim. Acta 22, 389 (1966)

    Article  ADS  Google Scholar 

  37. V.C. Farmer, The Infrared Spectra of Minerals (Mineralogical Society, London, 1974)

    Book  Google Scholar 

  38. B. Tyagi, ChD Chudasama, R.V. Jasra, Spectrochim. Acta Part A 64, 273 (2006)

    Article  ADS  Google Scholar 

  39. S. Valencia, J.M. Marín, G. Restrepo, Open Mater. Sci. J. 4, 9 (2010)

    Google Scholar 

  40. M. Long, W. Cai, J. Cai, B. Zhou, X. Chai, Y. Wu, J. Phys. Chem. B 110, 20211 (2006)

    Article  Google Scholar 

  41. X. Lin, J. Xing, W. Wang, Z. Shan, F. Xu, F. Huang, J. Phys. Chem. C 111, 18288 (2007)

    Article  Google Scholar 

  42. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    Article  Google Scholar 

  43. H. Dong, G. Chen, J. Sun, Ch. Li, Y. Yu, D. Chen, Appl. Catal. B 134–135, 46 (2013)

    Article  Google Scholar 

  44. Z. Yuan, Y. Wang, Y. Qian, Rsc. Adv. 2, 8602 (2012)

    Article  Google Scholar 

  45. H. Yu, J. Yu, S. Liu, S. Mann, Chem. Mater. 19, 4327 (2007)

    Article  Google Scholar 

  46. L. Wang, Q. Zhou, G. Zhang, Y. Liang, B. Wang, W. Zhang, Mater. Lett. 74, 217 (2012)

    Article  Google Scholar 

  47. Y. Li, X.-Y. Yang, J. Rooke, G. Van Tendeloo, B-L. Su. J. Colloid Interface Sci. 348, 303 (2010)

    Article  Google Scholar 

  48. R.G. Sandberg, G.H. Henderson, R.D. White, E.M. Eyring, J. Phys. Chem. 76, 4023 (1972)

    Article  Google Scholar 

  49. R.W. Ramette, E.B. Sandell, Rhodamine B equilibria. J. Am. Chem. Soc. 78, 4872 (1956)

    Article  Google Scholar 

  50. M. Nikazar, Kh Gholivand, K. Mahanpoor, Desalination 219, 293 (2008)

    Article  Google Scholar 

  51. Y. Song, J. Zhu, H. Xu, Ch. Wang, Y. Xu, H. Ji, K. Wang, Q. Zhang, H. Li, J. Alloys Compd. 592, 258 (2014)

    Article  Google Scholar 

  52. Y. Fang, R. Wang, G. Jiang, H. Jin, Y. Wang, X. Sun, Sh Wang, T. Wang, Bull. Mater. Sci. 35, 495 (2012)

    Article  Google Scholar 

  53. N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim, I. Harrison, Mater. Lett. 93, 393 (2013)

    Article  Google Scholar 

  54. L. Cheng, Y. Wang, D. Huang, T. Nguyen, Y. Jiang, H. Yu, N. Ding, G. Ding, Zh Jiao, Mater. Res. Bull. 61, 409 (2015)

    Article  Google Scholar 

  55. S. Liu, J. Tian, L. Wang, Y. Luo, X. Sun, Catal. Sci. Technol. 2, 339 (2012)

    Article  Google Scholar 

  56. A. Riga, K. Soutsas, K. Ntampegliotis, V. Karayannis, G. Papapolymerou, Desalination 211, 72 (2007)

    Article  Google Scholar 

  57. S. Lathasree, A. Nageswara, B. SivaSankar, V. Sadasivam, K. Rengaraj, J. Mol. Catal. A Chem. 223, 101 (2004)

    Article  Google Scholar 

  58. C.H. Chiou, C.Y. Wu, R.S. Juang, Chem. Eng. J. 139, 322 (2008)

    Article  Google Scholar 

  59. M. Guedes, J.A.F. Ferreira, A.C. Ferro, J. Colloid Interface Sci. 337, 439 (2009)

    Article  Google Scholar 

  60. J.K. Reddy, Z. Zhang, M.J. Vance, J. Environ. Sci. 29, 1754 (1995)

    Article  Google Scholar 

  61. W.Y. Wang, Y. Ku, Colloids Surf. A 302, 261 (2007)

    Article  Google Scholar 

  62. Sh Sohrabnezhad, A. Pourahmad, R. Rakhshaee, A. Radaee, S. Heidarian, Superlattices Microstruct. 47, 411 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the post – graduate office of Guilan University for the support of this work. Financial support by Rasht Branch, Islamic Azad University Grant No. 4.5830 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Sohrabnezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabnezhad, S., Pourahmad, A. & Salavatiyan, T. CuO–MMT nanocomposite: effective photocatalyst for the discoloration of methylene blue in the absence of H2O2 . Appl. Phys. A 122, 111 (2016). https://doi.org/10.1007/s00339-016-9645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9645-2

Keywords

Navigation