Skip to main content

Advertisement

Log in

Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93–0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10−5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg−1 and 269.23 mW kg−1 for 20 μA of discharge, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Jaipal Reddy, P.P. Chu, T. Sreekanth, U.V. Subba Rao, J. Mater. Sci. Mater. Electron. 12, 153 (2001)

    Article  Google Scholar 

  2. S.L. Jo, H.-J. Sohn, D.-W. Kang, D.-W. Kim, J. Power Sources 119–121, 478 (2003)

    Article  Google Scholar 

  3. L.N. Sim, S.R. Majid, A.K. Arof, Electrochim. Acta 123, 190 (2014)

    Article  Google Scholar 

  4. S. Ramesh, T.S. Yin, C.-W. Liew, Ionics 17, 705 (2011)

    Article  Google Scholar 

  5. C.C. Tambelli, A.C. Bloise, A.V. Rosario, E.C. Pereira, C.J. Magon, J.P. Donoso, Electrochim. Acta 47, 1677 (2002)

    Article  Google Scholar 

  6. O. Krejza, J. Velicka, M. Sedlarikova, J. Vondrak, J. Power Sources 178(2), 774 (2008)

    Article  Google Scholar 

  7. H.-D. Wu, I.-D. Wu, F. Chang, Polymer 42, 555 (2001)

    Article  Google Scholar 

  8. M.D. Gernon, M. Wu, T. Buszta, P. Janney, Green Chem. 1, 127 (1999)

    Article  Google Scholar 

  9. S.C. Baker, D.P. Kelly, J.C. Murrell, Nature 350, 627 (1991)

    Article  ADS  Google Scholar 

  10. R. Kumar, S.S. Sekhon, Ionics (2013). doi:10.1007/s11581-013-0890-5

    Google Scholar 

  11. J.P. Sharma, S.S. Sekhon, Mater. Sci. Eng. B 129, 104 (2006)

    Article  Google Scholar 

  12. C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, R. Baskaran, M.S. Bhuvaneswari, P.C. Angelo, Eur. Polym. J. 42, 2672 (2006)

    Article  Google Scholar 

  13. B.-K. Choi, B. Jang, Macromol. Res. 18(1), 35 (2010)

    Article  Google Scholar 

  14. C.-Y. Chiu, Y.-J. Yen, S.-W. Kuo, H.-W. Chen, F.-C. Chang, Polymer 48, 1329 (2007)

    Article  Google Scholar 

  15. C. Menaka, K. Sakthi Velu, P. Mani Sankar, T. Stalin, Indian J. Chem. A 52A, 467 (2013)

    Google Scholar 

  16. A.L. Saroj, R.K. Singh, S. Chandra, Mater. Sci. Eng. B 178, 231 (2013)

    Article  Google Scholar 

  17. V.V. Burdin, I.S. Kislina, V.D. Maiorov, S.G. Sysoeva, N.B. Librovich, Russ. Chem. B 47(12), 2404 (1998)

    Article  Google Scholar 

  18. R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, Solid State Ionics 177, 2679 (2006)

    Article  Google Scholar 

  19. D.T. Turner, A. Schwartz, Polymer 26, 757 (1985)

    Article  Google Scholar 

  20. S. Rajendran, V. Shanthi Bama, J. Non-Cryst. Solids 356, 2764 (2010)

    Article  ADS  Google Scholar 

  21. H. Liu, H. Ye, T. Lin, T. Zhou, Particuology 6, 207 (2008)

    Article  Google Scholar 

  22. A. Saroj, R.K. Singh, S. Chandra, J. Phys. Chem. Solids 7, 849 (2014)

    Article  Google Scholar 

  23. N. Rajeswari, S. Selvasekarapandian, S. Karthikeyan, M. Prabu, G. Hirankumar, H. Nithya, C. Sanjeeviraja, J. Non-cryst. Solids 357, 3751 (2011)

    Article  ADS  Google Scholar 

  24. G. Hirankumar, S. Selvasekarapandian, N. Kuwata, J. Kawamura, T. Hattori, J. Power Sources 144, 262 (2005)

    Article  ADS  Google Scholar 

  25. R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M.S. Bhuvaneswari, Ionics 10, 129 (2004)

    Article  Google Scholar 

  26. M. Vijayakumar, G. Hirankumar, M.S. Bhuvaneswari, S. Selvasekarapandian, J. Power Sources 117, 143 (2003)

    Article  ADS  Google Scholar 

  27. L.S. Ng, A.A. Mohamad, J. Membr. Sci. 325, 653 (2008)

    Article  Google Scholar 

  28. A.S. Samsudin, H.M. Lai, M.I.N. Isa, Electrochim. Acta 129, 1 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Hirankumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambika, C., Hirankumar, G. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery. Appl. Phys. A 122, 113 (2016). https://doi.org/10.1007/s00339-016-9642-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-9642-5

Keywords

Navigation