Skip to main content
Log in

Ultra-thin reflecting polarization beam splitter under spherical waves’ illumination by using single-layered anisotropic metasurface

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Planar focusing metasurface is capable of converting spherical waves into plane waves, while gradient phase distribution on metasurface contributes to anomalous reflection. By combining the double cases, we propose a new route of both gain enhancement and anomalous reflection. By using a compact ultra-thin anisotropic element, we design a polarization beam splitter under spherical waves’ illumination. With different phase gradients for x/y-polarized waves, the anisotropic metasurface has function of gain enhancement of 12.4 dB on average and reflecting x/y-polarized waves in −x/+y direction with the same reflected angel of 33° at the operating frequency of 15 GHz. For verification of simulation results, the metasurface sample with size of 102 × 102 mm2 and cells of 17 × 17 is fabricated and measured. Experimental results are in excellent agreement with the simulated ones, in which the high isolation of 30 dB at 15 GHz between x- and y-polarized waves is obtained. Due to the great performance in beam steering and thickness reduction, our design provides a promising approach of beam splitting, steering and gain enhancement in microwave region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.B. Pendry, A.J. Holden et al., Low frequency plasmons in thin-wire structures. J. Phys.: Condens. Matter. 10, 4785–4809 (1998)

    ADS  Google Scholar 

  2. D.R. Smith et al., Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000)

    Article  ADS  Google Scholar 

  3. N.F. Yu, P. Genevet, M.A. Kats, F. Aieta et al., Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  4. O. Paul, B. Reinhard et al., Gradient index metamaterial based on slot elements. Appl. Phys. Lett. 96, 241110 (2010)

    Article  ADS  Google Scholar 

  5. Q. Lin, T.J. Cui, J.Y. Chin, X.M. Yang, Q. Cheng, R. Liu, Controlling electromagnetic waves using tunable gradient dielectric metamaterial lens. Appl. Phys. Lett. 92, 131904 (2008)

    Article  ADS  Google Scholar 

  6. Y. Yao, W. Wu et al., Nanoimprint-defined, large-area meta-surfaces for unidirectional optical transmission with superior extinction in the visible-to-infrared range. Opt. Express 24(14), 15362–15372 (2016)

    Article  ADS  Google Scholar 

  7. K. Zhang et al., Anomalous three-dimensional refraction in the microwave region by ultra-thin high efficiency metalens with phase discontinuities in orthogonal directions. New J. Phys. 16, 103020 (2014)

    Article  ADS  Google Scholar 

  8. X. Ni et al., Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012)

    Article  ADS  Google Scholar 

  9. F. Aieta et al., Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces. Nano Lett. 12, 4932–4936 (2012)

    Article  ADS  Google Scholar 

  10. C. Saeidi, D. van der Weide, Wideband plasmonic focusing metasurfaces. Appl. Phys. Lett. 105, 053107 (2014)

    Article  ADS  Google Scholar 

  11. X. Wan, Y.B. Li, B.G. Cai, T.J. Cui, A broadband transfomation-optics metasurfaces lens. Appl. Phys. Lett. 105, 151604 (2014)

    Article  Google Scholar 

  12. X. Li, T.J. Cui, L. Zhou et al., Flat metasurfaces to focus electromagnetic waves in reflection geometry. Opt. Lett. 37, 4940–4942 (2012)

    Article  ADS  Google Scholar 

  13. N.K. Grady et al., Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)

    Article  ADS  Google Scholar 

  14. H.Y. Chen et al., Ultra-wideband polarization conversion metasurfaces based on multiple plasmon resonances. J. Appl. Phys. 115, 154504 (2014)

    Article  ADS  Google Scholar 

  15. W.L. Guo, G.M. Wang et al., Ultra-thin anisotropic transmitting metasurface for polarization beam splitter application. Chin. Phys. 25(8), 084101 (2015)

    Article  Google Scholar 

  16. T. Cai et al., Ultra-thin polarization beam splitter using 2-D transmissive phase gradient metasurface. IEEE Trans. Antennas Propag. 63(12), 5629–5636 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. Y.F. Li et al., Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces. J. Appl. Phys. 117, 044501 (2015)

    Article  ADS  Google Scholar 

  18. K. Song, Y.H. Liu, C.R. Luo, X.P. Zhao, High-efficiency broadband and multiband cross-polarization conversion using chiral metamaterial. J. Phys. D Appl. Phys. 47, 505104 (2014)

    Article  Google Scholar 

  19. H.F. Ma, G.Z. Wang, G.S. Kong, T.J. Cui, Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt. Matter. Express 4(8), 1717–1724 (2014)

    Article  Google Scholar 

  20. H.F. Ma, T.J. Cui et al., Independent controls of differently-polarized reflected waves by anisotropic metasurfaces. Sci. Rep. 5, 9605 (2015)

    Article  ADS  Google Scholar 

  21. S.L. Jia, X. Wan, D. Bao, Y.J. Zhao, T.J. Cui, Independent controls of orthogonally polarized transmitted waves using a Huygens metasurface. Laser Photonics Rev. 63(5), 545–553 (2015)

    Article  Google Scholar 

  22. S.L. Sun, Q. He, S.Y. Xiao, Q. Xu, X. Li, L. Zhou et al., Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater. 11(5), 426–431(2012)

    Article  ADS  Google Scholar 

  23. J.M. Hao, Y. Yuan, L.X. Ran, L. Zhou et al., Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys. Rev. Lett. 99, 063908 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

The authors would like to express their gratitude to anonymous reviewers for their helpful comments and China North Electronic Engineering Research Institute for the fabrication. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61372034, 61501499)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenlong Guo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, W., Wang, G., Li, H. et al. Ultra-thin reflecting polarization beam splitter under spherical waves’ illumination by using single-layered anisotropic metasurface. Appl. Phys. A 123, 103 (2017). https://doi.org/10.1007/s00339-016-0713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0713-4

Keywords

Navigation